欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    海康威视网络高清监控方案(1).pdf

    • 资源ID:86188337       资源大小:13.95MB        全文页数:132页
    • 资源格式: PDF        下载积分:19.9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要19.9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    海康威视网络高清监控方案(1).pdf

    网络高清视频监控系统 标准化解决方案 杭州海康威视系统技术有限公司 2013 年 11 月 目 录 目 录.错误!未定义书签。第 1 章 总体概述.错误!未定义书签。设计背景.错误!未定义书签。现状分析.错误!未定义书签。需求说明.错误!未定义书签。设计原则.错误!未定义书签。设计依据.错误!未定义书签。第 2 章 系统总体设计.错误!未定义书签。设计目标.错误!未定义书签。设计思路.错误!未定义书签。总体结构设计.错误!未定义书签。系统逻辑结构.错误!未定义书签。系统物理结构.错误!未定义书签。用户价值体现.错误!未定义书签。第 3 章 前端系统设计.错误!未定义书签。概述.错误!未定义书签。前端系统结构设计.错误!未定义书签。IPC 结构特点.错误!未定义书签。散热设计.错误!未定义书签。防水设计.错误!未定义书签。除雾设计.错误!未定义书签。防虚焦设计.错误!未定义书签。防刮擦设计.错误!未定义书签。IPC 功能亮点.错误!未定义书签。超低照度.错误!未定义书签。强光抑制.错误!未定义书签。高清透雾.错误!未定义书签。红外增强.错误!未定义书签。3D 数字降噪.错误!未定义书签。新一代宽动态.错误!未定义书签。SMART IPC 特色功能.错误!未定义书签。前端配套设施.错误!未定义书签。适用场景描述.错误!未定义书签。路面固定点监控.错误!未定义书签。出入口监控.错误!未定义书签。室内监控.错误!未定义书签。制高点监控.错误!未定义书签。大场景监控.错误!未定义书签。第 4 章 监控传输网络设计.错误!未定义书签。概述.错误!未定义书签。设计要求.错误!未定义书签。传输网络设计.错误!未定义书签。网络结构设计.错误!未定义书签。网络 IP 地址规划.错误!未定义书签。VLAN 规划.错误!未定义书签。路由总体规划.错误!未定义书签。网络传输带宽要求.错误!未定义书签。网络可靠性设计.错误!未定义书签。网络安全性设计.错误!未定义书签。网络管理规划.错误!未定义书签。设备选型说明.错误!未定义书签。第 5 章 监控中心系统设计.错误!未定义书签。概述.错误!未定义书签。系统结构设计.错误!未定义书签。存储子系统(NVR).错误!未定义书签。NVR 存储设计.错误!未定义书签。存储结构设计.错误!未定义书签。NVR 存储功能.错误!未定义书签。NVR 存储亮点.错误!未定义书签。设备选型说明.错误!未定义书签。存储子系统(CVR、IPSAN).错误!未定义书签。流媒体直写技术概述.错误!未定义书签。流媒体直写技术优势.错误!未定义书签。关键技术和重点功能.错误!未定义书签。解决方案.错误!未定义书签。存储容量计算.错误!未定义书签。解码拼控子系统.错误!未定义书签。视频综合平台设计.错误!未定义书签。视频综合平台主要功能.错误!未定义书签。主要功能效果展示.错误!未定义书签。视频综合平台亮点.错误!未定义书签。设备选型说明.错误!未定义书签。大屏显示子系统.错误!未定义书签。大屏显示子系统结构.错误!未定义书签。LCD 大屏.错误!未定义书签。DLP 大屏.错误!未定义书签。设备选型说明.错误!未定义书签。主要设备选型.错误!未定义书签。监控中心及机房配套设施.错误!未定义书签。第 6 章 应用管理系统设计.错误!未定义书签。概述.错误!未定义书签。软件架构设计.错误!未定义书签。软件模块组成.错误!未定义书签。中心管理模块.错误!未定义书签。应用模块.错误!未定义书签。客户端模块.错误!未定义书签。视频质量诊断模块.错误!未定义书签。视频图像拼接模块.错误!未定义书签。平台功能设计.错误!未定义书签。基础管理功能.错误!未定义书签。基础应用功能.错误!未定义书签。高级业务应用.错误!未定义书签。平台部署环境.错误!未定义书签。硬件环境.错误!未定义书签。软件环境.错误!未定义书签。第 7 章 视频系统利旧设计.错误!未定义书签。概述.错误!未定义书签。系统利旧整体设计.错误!未定义书签。模拟监控系统接入设计.错误!未定义书签。网络监控系统接入设计.错误!未定义书签。第 8 章 方案优势分析.错误!未定义书签。全高清.错误!未定义书签。全网络.错误!未定义书签。高集成化.错误!未定义书签。高智能化.错误!未定义书签。高可靠性.错误!未定义书签。高扩展性.错误!未定义书签。高易用性.错误!未定义书签。第 9 章 应用举例.错误!未定义书签。需求描述.错误!未定义书签。系统设计.错误!未定义书签。前端部分设计.错误!未定义书签。监控中心设计.错误!未定义书签。传输网络设计.错误!未定义书签。应用管理软件设计.错误!未定义书签。配置清单.错误!未定义书签。第1章 总体概述 1.1 设计背景 从模拟到网络、从标清到高清,随着安防监控技术的不断发展,用户对监控系统的要求越来越高。目前为了解决监控系统的视频图像分辨率低、存储可靠性差、视频上墙显示复杂及系统管理性差等方面的问题,海康威视从系统的先进性、可靠性、实用性等方面出发,推出了一套集前端采集、后端存储、上墙显示及应用管理于一体的网络高清视频监控系统标准化解决方案。1.2 现状分析 随着计算机、网络以及图像处理、传输技术的飞速发展,视频监控技术也有长足的发展,从最早模拟监控到数字监控再到现在方兴未艾的网络视频监控,发生了翻天覆地的变化。目前视频监控系统在应用中主要存在如下问题:系统管理性差、功能应用少:系统很难实现对设备的集中管理,较少有系统管理平台或者现有管理平台的管理性不强、功能少,多局限于视频的预览、回放等基础功能,不能对系统设备进行远程参数配置、状态检测、用户权限管理等。视频清晰度低、图像质量差:现有的视频监控资源多数是以标清图像为主,整体视频图像质量差,只能解决“看得见”,无法实现“看得清”,降低了视频资源的使用价值。系统组网性不强:模拟监控系统的组网和应用受地域限制的影响较大,管理性和资源共享性较差;另外系统的扩展性和灵活性较差,不利于远距离传输。视频码流大、画面不流畅:用户在预览视频图像时,会经常出现卡、顿等现象,尤其是视频码流高、网络环境差的系统,严重影响用户的业务应用。录像占用空间高、检索效率低:视频图像占用存储空间大,存储成本较高;且录像易丢失,经常查找不到,困扰用户。系统部署复杂、设备占用空间多:原系统解码、上墙、拼控等功能实现非 常复杂,系统所涉及的设备部署不方便,同时会占用较多空间。系统维护不方便、故障响应不及时:系统缺乏对前端设备故障的自动侦测与预警,前端摄像机损坏很长时间也未及时发现。对旧系统的整合程度不高:新建视频监控系统与原有系统之间难以融合,原有监控资源利用率低,造成资源浪费。1.3 需求说明 根据现状分析发现原先系统存在众多弊病,用户为解决上述问题,提出以下需求:1)系统需要有中心平台进行统一管理;系统应达到高清视频的采集、传输、存储、显示;系统需全 IP 化,从而实现灵活组网,便捷管理;降低视频码率,提高视频预览的效果;系统应具备灵活、可靠的存储方式;实现高清视频解码、拼接控制、开窗漫游显示等功能的一体化;系统具备视频质量诊断功能;从节省资源、降低成本的角度考虑原有系统利旧。1.4 设计原则 本系统以“先进性、可靠性、实用性、经济性、扩展性”为基本原则,具体如下:先进性:采用成熟、主流的设备构建系统,系统建设充分利用当前最新的视音频、数据、网络等技术,充分兼顾需求和技术的不断变化,建设业内领先的高清视频监控系统。可靠性:系统硬件采用电信级的服务器及专业设备,对关键设备采取冗余备份措施,软件采用模块化、分层隔离的设计思想,确保整个系统长期稳定运行。实用性:系统的设计突出应用,以现实需求为导向,以有效应用为核心,以 技术建设与工作机制的同步协调为保障,确保系统能有效服务于用户的工作需要。经济性:系统整体配置性能高,价格合理,建设成本和投入较低,同时方案考虑原有监控系统的利旧。扩展性:系统采用业界主流的硬件设备,提供标准的协议,具有良好的兼容性和通用的软硬件接口,可以全面兼容主流厂商的设备,并能为其他系统提供接口。1.5 设计依据 1)视频安防监控系统技术要求(GA/T367-2001)2)民用闭路监视电视系统工程技术规范(GB50198-2011)3)安全防范系统雷电浪涌防护技术要求(GA/T 670-2006)4)安全防范工程技术规范GB50348-2004 5)信息技术 安全技术 IT 网络安全GB/T25068 第2章 系统总体设计 2.1 设计目标 系统采用高清视频监控技术,实现视频图像信息的高清采集、高清编码、高清传输、高清存储、高清显示;系统基于IP 网络传输技术,提供视频质量诊断等智能分析技术,实现全网调度、管理及智能化应用,为用户提供一套“高清化、网络化、智能化”的视频图像监控系统,满足用户在视频图像业务应用中日益迫切的需求。本方案主要实现以下目标:建成统一的中心管理平台:通过管理平台实现全网统一的视频资源管理,对前端摄像机、编码器、解码器、控制器等设备进行统一管理,实现远程参数配置与远程控制等;通过管理平台实现全网统一的用户和权限管理,满足系统多用户的监控、管理需求,真正做到“坐阵于中心,掌控千里之外”。实现系统高清化与网络化:本方案以建设全高清监控系统为目标,为用户提供更清晰的图像和细节,让视频监控变得更有使用价值;同时以建设全 IP 监控系统为目标,让用户可通过网络中的任何一台电脑来观看、录制和管理实时的视频信息,且系统组网便利,结构简单,新增监控点或客户端都非常方便。系统具备以下特征:系统具备高可靠性、高开放性的特征:通过采用业内成熟、主流的设备来提高系统可靠性,尤其是录像存储的稳定性,另外系统可接入其他厂家的摄像机、编码器、控制器等设备,能与其他厂家的平台无缝对接;具备高智能化、低码流的特征:运用智能分析、带有智能功能的摄像机等提高系统智能化水平,同时通过先进的编码技术降低视频码流,减少存储成本和网络成本,减弱对网络的依赖性,提高视频预览的流畅度;具备快速部署、及时维护的特征:通过采用高集成化、模块化设计的设备提高系统部署效率,减少系统调试周期,系统能及时发现前端监控系统的故障并及时告警,快速相应;具备高度整合、充分利旧的特征:新建系统能与原有系统高度整合、无缝对接,能充分利用原有监控资源,避免前期投资的浪费。2.2 设计思路 本方案的总体设计思路如下:1)前端设备均采用高清 IPC,从而实现高清视频采集,同时为满足前端多种应用场景的不同需求,推荐不同类型、不同功能的IPC;2)采用 NVR 存储模式对实时视频进行分布式存储,实现存储系统的高可靠、高性价比;3)部署模块化、集成化的视频综合平台,结合高清显示大屏实现视频图像、电子地图、电脑信号的上墙显示、拼接控制等功能;同时视频综合平台还配置服务器板卡,为部署平台软件提供必要环境,实现软硬件一体化;4)建立统一的视频信息管理应用平台,实现对系统的统一管理;同时引入视频质量诊断技术,保障系统稳定运行;5)充分考虑原有系统利旧,实现新老系统的无缝对接,降低成本,减少资源浪费。2.3 总体结构设计 2.3.1 系统逻辑结构 整个方案从逻辑上可分为视频前端系统、传输网络、监控中心和应用管理平台四部分内容,视频存储、视频解码拼控和大屏显示等内容在监控中心部分进行设计。另外,方案对系统利旧方面进行了简单说明,符合众多项目设计的实际需求。下图为系统拓扑图:系统逻辑结构图 2.3.2 系统物理结构 系统物理结构图 前端部分:前端支持多种类型的摄像机接入,本方案配置高清网络枪机、球机等,前端网络摄像机将采集的模拟信号转换成网络数字信号,按照标准的音视 频编码格式及标准的通信协议,可直接接入网络并进行视频图像的传输。传输网络部分:传输网络部分主要是对前端接入到核心交换机之间的网络进行设计,前端系统通过光纤收发器等网络传输设备将新建前端网络高清摄像机连接至监控中心的接入交换机,再通过接入交换机将网络信号汇聚到中心的核心交换机,监控中心端的接入交换机负责 PC 工作站和 NVR 存储等设备的接入。监控中心部分:监控中心采用 NVR 将高清视频图像进行存储,解决数据落地问题;配置视频综合平台,完成视频的解码解码、拼接;监控中心部署 LCD 大屏用来将视频进行上墙显示等。系统可将模拟摄像机、网络摄像机和数字摄像机都接入到视频综合平台,实现统一的管理平台、统一的切换控制系统和统一的显示系统,实现对整个系统的统一配置和管理。平台部分:应用管理平台部署在视频综合平台的服务器板卡上,形成一体化的配置,应用管理平台可以对高清视频和用户进行统一管控,并且配置 PC 工作站进行预览、回放、下载等操作。2.4 用户价值体现 该系统是以用户需求为出发点、用户价值为落脚点,并结合海康威视产品亮点进行组合设计,该系统的设计可带来以下几点用户价值,总结为“一项维护、两个便利、三类降低、四种效果”,具体如下:1)有效的系统维护:该方案采用视频质量诊断技术,自动对前端监控点的视频图像是否完好、设备是否在线等进行实时、不间断的检测与报警,及时发现前端系统运行发生的问题,并及时告警通知,避免因有效保障系统高质量运行;2)系统部署的便利:该方案实现了软件与硬件部署的一体化、视频解码与上墙显示的一体化及网络、模拟、数字视频信号可集中处理的一体化,方便安装调试,减少了部署时间;3)系统扩容的便利:采用的是标准化的设备,可接入第三方平台软件;而且平台开放性高,可兼容其他厂家的摄像机、存储等设备;视频 综合平台采用模块化设计,设计时留有一定的冗余,方便系统后期的升级与扩容;4)存储成本的降低:该方案设计采用码流低的摄像机,最大可减少3/4 的存储占用空间,降低了存储成本;5)网络成本的降低:该方案通过采用低码流的网络高清智能摄像机,同等图像质量下,720p 码率只需 12M,1080p 码率只需 34M,从而降低了网络开销,降低了网络成本;6)系统功耗的降低:从前端摄像机到存储 NVR 都采用新技术降低了功耗,从整体上降低了功耗,达到节能减排的效果;特别是 NVR 设备选用 TI 专用视频处理芯片、磁盘休眠技术等,有效降低整机功耗;7)良好的视觉效果:系统实现了全高清模式,且可实现对大场景的高清监控,满足用户对高清监控的需求,提高用户的体验度;8)畅通的预览效果:该套方案通过先进的智能编码技术,有效降低了视频码流,减少了视频预览不流畅等现象;9)便捷的管理效果:系统实现了全网络监控,满足用户对数字化组网的要求,方便用户对系统网络化管理,轻松做到足不出户就能管控管局;10)先进的智能效果:该套方案采用智能网络摄像机、智能球机和智能分析技术,体现了高度的智能化水平,可让用户体验丰富的智能效果。第3章 前端系统设计 3.1 概述 海康威视视频监控前端系统可根据不同场景的不同需求,灵活选择合适的前端监控产品,既能满足路面固定点、路面可控点、出入口、室内等常规场景的监控需求,又能满足制高点、大场景的远距离、大范围和大视场的特殊场景的监控需求。海康威视网络高清摄像机,通过其全新的硬件平台和最优的编码算法,提供最高效的处理能力和最丰富的功能应用,旨在给用户提供更优质的图像效果、更丰富的监控价值、更便捷的操作管理和更完善的维护体系。3.2 前端系统结构设计 前端摄像机选型应根据不同应用场景的不同监控需求,选择不同类型或者不同组合的摄像机,可以选择固定枪机与球机搭配使用、交叉互动原则,以保证监控空间内的无盲区、全覆盖,同时根据实际需要配置前端基础配套设备如防雷器、设备箱等以及视频传输设备和线缆。针对具体监控点位的实际情况,摄像机、补光灯(选配)安装于监控立杆上,网络传输设备、光纤收发器、防雷器、电源等部署于室外机箱。监控网络摄像机前端部署结构如下图所示:接入网接入网外置补光灯(选配)网络枪型摄像机网络球型摄像机电源模块以太网电源线光纤杆上设备机箱内设备光纤收发器防雷器 监控前端部署结构示意图 3.3 IPC 结构特点 海康威视网络摄像机产品形态各不相同,每种产品形态采用科学、合理的结构进行设计,从结构上保证产品质量和监控图像质量。在以往结构设计的基础上,IPC 还有以下几点突出的设计:3.3.1 散热设计 据统计,电子设备的失效率有 55是温度值引起的。如果摄像机温度低 10度的话,产品的使用寿命可以提高一倍。海康威视进行精密的散热设计,选用高效的散热材料,使摄像机的温升控制在较低的水平,工作温升比华南厂家低 10度左右。3.3.2 防水设计 海康威视拥有多项专利防水设计,防水性能优越;采用先进高效防水检测工艺,全系列室外摄像机产品出厂 100%检测防水性能。3.3.3 除雾设计 需要打开外罩调节镜头的防水型摄像机在湿度高且温差大的环境下,内部可能会起雾凝结;为解决起雾问题,海康威视在摄像机内部装有防水透气膜和干燥剂,能快速有效散走雾气。3.3.4 防虚焦设计 海康威视所有定焦摄像机均采用高效胶质材料点胶锁死,所有变焦摄像机均采用专业校准技术矫正,有效防止镜头虚焦现象出现。3.3.5 防刮擦设计 半球罩刮花后,红外光照射到刮痕处会出现漫反射,造成红外反光。海康威视全系列红外半球采用 PC 加硬半球罩,具备防刮花功能,有效防止红外半球反光现象。3.4 IPC 功能亮点 3.4.1 超低照度 海康威视摄像机采用业界高端传感器和DSP,具备很高的感光度,在光照条件极差的条件下也可获得色彩还原度较高的画面。超低照度摄像机对比效果示例图 3.4.2 强光抑制 在夜间监控车辆道路、出入口等情况下,往往因为车光线太强严重影响视频图像质量,海康威视产品中广泛采用强光抑制技术来解决此种困扰,有效抑制强光点直接照射造成的视频图像模糊,能自动分辨强光点,并对强光点附近区域进 行补偿以获得更清晰的图像。强光抑制开启与关闭效果示例图 3.4.3 高清透雾 雾霾天气下,空气中的液滴和固体小颗粒使户外监控的质量降低,图像显得色彩黯淡、对比度低,一些重要目标的细节难以观察,视频监控的实用性受到很大影响。海康威视产品中网络高清摄像机和球机大多具备高清透雾功能,基于大气透射模型,区分图像不同区域景深与雾浓度进行滤波处理,同时融合图像增强技术与图像复原技术,获得准确、自然的透雾图像。没有高清透雾功能的监控效果示例图 有高清透雾功能的监控效果示例图 3.4.4 红外增强 针对夜间或光线不好的场景下图像质量差的问题,海康威视推出红外摄像机和红外球机,采用阵列红外灯使红外距离最远可达150 米,并结合 3D 降噪技术可以获得清晰的夜间图像。红外监控效果示例图 3.4.5 3D 数字降噪 3D 数字降噪功能能够降低弱信号图像的噪波干扰。由于图像噪波的出现是随机的,因此每一帧图像出现的噪波是不相同的。3D 数字降噪通过对比相邻的几帧图像,将不重叠的信息(即噪波)自动滤出,从而显示出比较纯净细腻的画面。海康威视产品中广泛采用 3D 时空域联合降噪处理,结合准确的噪声强度估 计算法,在光照理想、噪声较低时图像清晰细节没有损伤,光照不足时噪声明显抑制,图像细节大量保留,有效提升视频监控图像质量。降噪前图片示例 降噪后图片示例 3.4.6 新一代宽动态 监控环境中常会遇到光线明暗反差过大的场景,利用宽动态技术,场景中特别亮的部位和特别暗的部位同时都能看得特别清楚。普通摄像机获取的是背景清晰但是前景较暗的图像,宽动态摄像机能获取前景和背景都清晰的图像。海康威视采用业界高端传感器并结合自主研发算法,海康威视新一代 WDR 基于动态范围达 120db 的多重曝光 Sensor,采用局部亮度映射与图像增强相结合的处理算法,在逆光环境下能够清晰地保留暗处细节并抑制亮处过曝,大幅提升宽动态场景的图像质量。宽动态摄像机图片效果示例图 3.4.7 SMART IPC 特色功能 海康威视推出 SMART IPC 系列产品,包括网络高清枪机、网络高清筒机和网络高清半球,在传统 IPC 的基础上,又在智能编码、智能侦测、智能控制上取得了很大的突破,通过先进的编码技术、图像感知与处理技术等在保障甚至提高监控图像质量的前提下,大幅度降低视频码流,使得在有限的网络带宽的条件下传输高质量的视频图像数据,并且通过丰富多样的功通满足不同环境的监控要求,提升视频监控系统的智能化水平。SMART IPC 亮点图 3.4.7.1 智能编码 1)低码率 同等图像质量下,720p 码率只需 12M,1080p 码率只需 34M;码率最多降低 3/4,存储空间最多减少 3/4,带宽占用最多减少 3/4。2)ROI(感兴趣区域编码)ROI 示意图 ROI 可将码流资源按需分配,将有限的资源集中在一块或多块感兴趣区域,提升感兴趣区域(如车牌、人脸)图像质量;在保证关键区域图像质量的前提下,码率至少可降低 1/2。3)SVC(可伸缩视频编码技术)SVC 示意图 SVC 使得网络摄像机编码后的视频流具有伸缩能力,配合后端支持 SVC 的NVR,可实现对任意时间段录像抽帧压缩,压缩后可将录像时间延长 3倍;海康 720pIPC低码率+ROI综合运用可节省3/4的存储空间,一块 2T 硬盘,可存储 4 路 720pIPC录像 47 天。4)多码流 多码流示意图 支持多路独立编码码流,双路实时高清码流;每路码流可分别设置不同分辨率、帧率、编码格式 MJPEG/MPEG4);总带宽提升至 80M,可满足 20 路同时在线预览。5)低延时 高效编码算法,所有网络摄像机产品延时均在 200ms 以内;最短延时模式下,平均延时 720p/2M 可达 140ms,1080p/4M 可达 160ms。3.4.7.2 智能侦测 1)行为侦测 行为侦测示意图 智能行为侦测功能支持对跨界入侵的行为进行自动检测,并可对进入区域和离开区域的行为分别布防;也可对区域入侵的行为进行自动检测,并可对入侵区域的物体的占比进行自动识别,减少误报率;摄像机侦测到以上行为后可联动报警及录像等功能。2)人脸侦测 人脸侦测示意图 智能行为侦测功能支持对跨界入侵的行为进行自动检测,并可对进入区域和离开区域的行为分别布防;也可对区域入侵的行为进行自动检测,并可对入侵区域的物体的占比进行自动识别,减少误报率;摄像机侦测到以上行为后可联动报警及录像等功能。3)音频侦测 音频侦测示意图 摄像机音频侦测功能可对声音的强度进行检测,当检测到无音源输入或某一时刻音频强度超过声音强度阈值时,可实现自动预警。同时具备环境噪音过滤功能,可通过软件算法处理的方式缓解背景噪声对音质带来的影响。4)场景侦测 场景侦测示意图 海康威视视频质量诊断技术可对场景变更、图像虚焦问题进行自动分析检测,并联动报警;海康威视场景模式可对各种场景下的参数进行预设,方便客户选择;支持日夜两套参数配置,可实现自动切换。3.4.7.3 智能控制 1)智能 Smart IR 智能 smart IR 示意图 新一代 Smart IR 技术可自动检测画面亮度,通过内部算法自适应调节红外灯亮度以及画面亮度,从而达到抑制近处物体过曝同时保证背景区域亮度的效果。2)ABF 自动背焦调节 ABF 示意图 部分枪机具有 ABF(自动后焦调节)功能,通过摄像机上的 ABF 按钮或者客户端/IE 上的辅助聚焦等按钮可自动或手动实现图像传感器的细微调整,从而达到微调焦距的作用,方便了安装调试。3)AF 自动对焦 AF 示意图 普通电动镜头受减速齿轮控制,聚集速度慢,且不能实现实时全自动聚焦,只支持一键辅助聚焦;齿轮不具备自锁功能,所以不抗震;海康威视电动镜头支持变倍后自动对焦功能(AF),无需手动聚清,且聚焦速度快,同时具有自锁功能,抗震效果好。3.5 前端配套设施 1)支架及立杆 监控点根据现场实际情况,可采用立杆安装、抱箍安装、壁挂安装以及吊杆安装等方式。其中抱箍、壁挂支架以及吊杆支架有成套产品,根据现场选择符合要求的产品即可。室内摄像机的安装固定,根据摄像机型号和现场情况可采用壁装、吊装及角装等多种形式的安装支架,安装高度不低于。安装在室外的摄像机,当可借助建筑物附着安装时,选用相应的安装支架来安装;若无合适的建筑物供附着安装,则需要选用视频监控专用立杆,安装高度应不低于。2)室外机箱 室外摄像机的供电、信号等需要在室外进行汇集,需用专用的防水箱进行端接。端接箱内部安装架的设计充分考虑设备的安装位置,同时具有防雨、防尘、防高温、防盗等功能。不便于在立杆上部安装设备箱的,在地面设置设备机柜,其设计按照相关的规范标准执行,同时应具有防尘、防雨、防破坏等功能。3)补光设备 在摄像监控中,为了使夜间得到正常的监控图像,可选择采用一定的补光措施。补光灯的光源通常有 LED、金卤灯、高压钠、白炽灯、氙气灯(HID)等。4)防雷接地 对前端供电和控制部分,需要采取有效的避雷接地措施,充分保障前端的稳定性和可靠性。前端监控的防雷接地主要从以下三个方面进行:直击雷防护 在直击雷非防护区的每个视频监控点均配置预放电避雷针,安装于监控点立杆顶部。提前预放电避雷针利用雷云电场周围电场强度向针尖发射高压脉冲特性,提前一定的时间引导雷电放电,不至于使局部雷云电荷积累形成过大的雷击强度,降低监控点雷击接闪强度和电子设备雷击电磁脉冲强度,提高了室外监控点的保护裕度。供电设施的雷击电磁脉冲防护 电源防雷系统主要是防止雷电波通过电源对前端设备造成危害。为避免高电压经过避雷器对地泄放后的残压或因更大的雷电流在击毁避雷器后继续毁坏后续设备,以及防止线缆遭受二次感应,本系统对前端室外防水箱 220V 电源进线以及室外防水箱到摄像机的低压电源线路进行避雷接地。220V 电源进线避雷标称放电电流不小于 10KV,接地线缆建议不小于 6mm2。均压等电位连接技术 等电位连接是将正常不带电(或不带信息)的、未接地或未良好接地的设备金属外壳、电缆的金属外皮、金属构架、金属管线与接地系统作电气连接,防止在这此物件上由于感应雷电高压或接地装置上雷电入地高电位的传递造成对设备内部绝缘、电缆芯线的反击。监控点设备(含电源避雷器、控制信号避雷器)宜采用单点接地方式实现等电位连接,独立接地电阻小于10。5)前端供电 系统设备建议采用集中供电,电源质量建议满足下列要求:稳态电压偏移不大于2%;稳态频率偏移不大于;电压波形畸变率不大于5%。6)传输设备及线缆 前端监控系统中,视频信号的传输是整个系统非常重要的一环,关系到整个监控系统的图像质量和使用效果,因此要选择经济、合理的传输方式。目前,在监控系统中最常用的传输介质是同轴电缆、双绞线、光纤等方式,本方案前端系统以高清网络摄像机为主,大部分为网络传输方式,但是对于不同场合、不同的传输距离,应选择不同的传输方式。网络双绞线传输 从前端摄像机到接入交换机距离不超过 100m 的情况下,使用网络双绞线(下面简称网线)来传输,这种传输方式的优点是线缆和设备价格便宜。网络摄像机交换机网线 前端网线传输示意图 光缆传输 从前端摄像机到接入交换机距离超过 100m 的使用光缆来传输,通过光纤收发器将电信号转成光纤信号进行传输,如下图所示:网络摄像机光纤收发器交换机光纤收发器光纤网线网线 前端光纤传输示意图 3.6 适用场景描述 方案根据几种典型的前端应用场景,明确相应场景的前端设备选型说明,达到最优的视频监控效果,具体内容见以下章节。3.6.1 路面固定点监控 3.6.1.1 主要应用场景 路面固定点的监控场景主要是固定的、小范围的,如监控区域内主干道上的路段和路口、停车场、大楼门口、外围周界、重点监控区域等固定监控场景。实际选型中,根据不同的场景及需求选择相应的摄像机。3.6.1.2 前端选型说明 路面固定点推荐选择海康威视网络高清枪型摄像机进行监控,满足在覆盖范围内看清过往行人、车辆的行为特征和体貌特征;摄像机要达到 IP66 的防护等级,避免在雨天等环境下因为雨水或灰尘的进入;在晚上光线不足的环境下推荐采用超低照度功能或红外功能的网络高清枪机,保障夜晚等光线不足环境下的监控图像质量。路面固定点推荐使用海康威视130万网络高清枪机DS-2CD4012F-(A)或200 万网络高清枪机 DS-2CD4024F-(A),镜头、支架等配件需根据现场环境和实际需求而定。3.6.1.3 监控效果展示 路面可控点监控效果示例图 3.6.2 出入口监控 3.6.2.1 主要应用场景 出入口监控场景主要是一些出入口,如大楼、超市、娱乐场所等出入口。实际选型中,根据不同的场景及需求选择相应的摄像机。3.6.2.2 前端选型说明 出入口监控推荐选择海康威视网络高清枪机,摄像机要达到 IP66 的防护等级,避免在雨天环境下因设备进水而导致设备损坏或影响监控质量;在晚上光线不足的环境下推荐采用带红外功能或者低照度功能的摄像机,保障夜晚等光线不足环境下的监控图像质量;对于逆光环境,推荐选择带有超宽动态功能的摄像机。出入口推荐使用海康威视130万网络高清枪机DS-2CD4012FWD或300万网络高清枪机 DS-2CD4032FWD,镜头、支架等配件需根据现场环境和实际需求而定。3.6.2.3 监控效果展示 出入口监控效果示例图 3.6.3 室内监控 3.6.3.1 主要应用场景 室内监控的主要应用场景包括以下几种:楼道、电梯、走廊、大厅、办公区、重要房间、库房、地下室等。实际选型中,根据不同的场景及需求选择相应的摄像机。3.6.3.2 前端选型说明 在楼道、走廊等固定室内监控场景推荐采用海康威视低照度、宽动态的网络枪机或者半球;在重要房间、库房等监控场景推荐采用红外半球或红外筒机;在大厅等室内大范围监控场景推荐选用高清半球;在光线不足或强光环境下推荐选用带有宽动态、超低照度等功能的红外摄像机,来保障监控图像质量。室内推荐使用海康威视 130 万网络高清半球 DS-2CD4112FWD-(I)(Z)或 200万网络高清半球 DS-2CD4124FWD-(I)(Z),镜头、支架等配件需根据现场环境和实际需求而定。3.6.3.3 监控效果展示 室内监控效果示例图 3.6.4 制高点监控 3.6.4.1 主要应用场景 制高点监控的场景主要为在楼顶、塔顶、山顶等制高点处对所在范围内的整体的、大范围的监控。实际选型中,根据不同的场景及需求选择相应的摄像机。3.6.4.2 前端选型说明 制高点监控推荐采用海康威视网络高清智能球型摄像机,或采用网络高清枪机加大倍率的电动镜头配合支持云台控制的一体化云台,电动镜头的焦距根据实际监控范围确定选配。设备需支持实时透雾功能,以应对各种复杂环境下的实时监控,同时摄像机要达到 IP66 的防护等级,避免在雨天环境下因设备进水而导致设备损坏或影响监控质量。制高点推荐使用海康威视 200 万网络高清球机 DS-2DF7286-(A)或配置有大倍率电动镜头和一体化云台 200 万网络高清枪机 DS-2CD4024F-(A),镜头、支架等配件需根据现场环境和实际需求而定。3.6.4.3 监控效果展示 制高点监控远景效果示例图 3.6.5 大场景监控 3.6.5.1 主要应用场景 大场景的应用场景主要为具有开阔视野和需要大范围呈现监控画面的场景,如机场跑道、停机坪、广场、火车站台、码头、港口等,应用视频图像拼接技术,通过将来自不同视角的多个摄像机的监控图像拼接在一起得到高分辨率图像,解决用户大场景高清晰监控的迫切需求,用户可以在一幅视频图像上浏览高清晰的大场景画面。实际选型中,根据不同的场景及需求选择相应的摄像机。3.6.5.2 前端选型说明 多相机拼接推荐采用海康威视网络高清枪机,为了保障拼接后的图像质量,应选用相同型号、相同配置的网络高清枪机,而且在实际拼接操作过程中,前端摄像机的参数配置也要保持一致。为了保障拼接的图像质量,拼接时需按照相关要求进行操作。大场景监控推荐使用海康威视 200 万网络高清枪机 DS-2CD4024F,镜头、支架等配件需根据现场环境和实际需求而定。3.6.5.3 监控效果展示 拼接前后对比示例图 3.6.5.4 拼接布设要求 6)拍摄场景选择和要求 建议以视野开阔、纹理丰富的室外远景为最佳拼接场景。如下图:尽量避免纵深感强烈的室内场景,这类场景容易造成拼接瑕疵。如下图:呈现在摄像机中的景物尽量距离摄像机 10M(或 10M 以上)。如果受演示条件限制,只能进行室内演示,请挑选空间小一些的办公室,将摄像机架设在室中央,尽量保证拍摄到的景物距离摄像机远近的一致性。如下图:尽量避免纹理稀少,模糊,对比度低,呈现出“白雾状”特点的场景。如下图:7)摄像机摆放方式 原则上所有摄像机呈横向或扇形排列,高度保持一致。实际操作时,要综合考虑拍摄环境、摄像机数量、镜头视场角等因素并根据调试结果来摆放摄像机。图1 横向或扇形拼接模式 8)前端基础配套设施 摄像机的拍摄距离和成像范围 摄像机实际成像范围R成像区域镜头角度拍摄距离LR=2 *L*tg(/2)R:实际成像的范围L:相机与拍摄点的距离:镜头的成像角度 拍摄距离和成像范围示意图 1 摄像机摄像机可拼接的距离范围重叠区域 拍摄距离和成像范围示意图 2 立杆设计 根据部位与要求选择摄像机安装方式。采用立杆安装方式时,除特殊情况外,摄像机离地面高度一般不低于 3000mm,但不高于 5000mm,立杆下端管径应在 160 mm10mm、上端管径应在 100mm5mm,管壁厚度应4mm,挑臂长度根据实际情况选定,立杆应做灌筑基础,基础深度应不小于 1000mm,底部直径应不小于1000mm。立杆要进行专门设计,要求美观、精致。9)图像调节方式 图像边缘锐利 将各摄像机的镜头对好焦,使图像画面边缘锐利。恰当的重叠区域 微调摄像机云台,使各原始图像重叠区域以占原始图像的 1/4-1/3宽度及高度为佳,不宜过长或过短。原始图像高度一致 调节摄像机云台,尽量使所有的原始画面的景物处于同一水平高度,不要相差太大。明暗色调一致 调节各摄像机的亮度,对比度,使所有的原始画面明暗程度尽可能差不多,但也要避免整体欠曝或过曝。第4章 监控传输网络设计 4.1 概述 网络的整体设计不仅关系到整个网络系统的性能,还涉及到未来网络系统如何有效地与新技术接轨以及系统的平滑升级等问题。本系统立足于满足高清视频接入、转发、存储、解码等需求,同时选择适合的有发展前途的网络技术,充分满足未来五年监控系统业务的需求。因此首先对监控系统网络的建网思路做一个整体规划,监控网络系统应考虑如下几个方面:1)采用新一代、主流网络技术来设计监控网络,新一代网络技术往往能提供更高的性能,而且有更长的产品生命周期,便于维护。2)传统的设计方法是按核心层、接入层分级设计,但是随着网络管理技术的进步和发展,网络设计向扁平型方向发展。3)监控网络需要按照模块化、结构化的原则设计,便于今后扩充和升级。4)针对网络的安全隐患,系统应通过多种安全措施保障系统的安全。4.2 设计要求 1)网络传输协议要求 系统网络层应支持 IP 协议,传输层应支持TCP 和 UDP 协议。2)媒体传输协议要求 视音频流在基于 IP 的网络上传输时应支持 RTP/RTCP 协议;视音频流的数据封装格式应符合标准要求。3)信息传输延迟时间 当信息(包括视音频信息、控制信息及报警信息等)经由 IP 网络传输时,端到端的信息延迟时间(包括发送端信息采集、编码、网络传输、信息接收端解码、显示等过程所经历的时间)应满足要求:前端设备与信号直接接入的监控中心相应设备间端到端的信息延迟时间应不大于 2s。前端设备与用户终端设备间端到端的信息延迟时间应不大于 4s。4)网络传输带宽 联网系统网络带宽设计应能满足前端设备接入监控中心、监控中心互联、用户终端接入监控中心的带宽要求,并留有余量。5)网络传输质量 联网系统 IP 网络的传输质量(如传输时延、包丢失率、包误差率、虚假包率等)应符合如下要求:网络时延上限值为 400ms;时延抖动上限值为 50ms;丢包率上限值为 110-3;包误差率上限值为 110-4。4.3 传输网络设计 4.3.1 网络结构设计 监控传输网络系统主要作用是接入各类监控资源,为中心管理平台的各项应用提供基础保障,能够更好的服务于各类用户。网络结构如下图所示:网络拓扑示意图 1)核心层 数据中心核心网 核心层主要设备是

    注意事项

    本文(海康威视网络高清监控方案(1).pdf)为本站会员(w***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开