大学毕设论文--多元线性回归在房地产中的应用.doc
-
资源ID:86251817
资源大小:1.13MB
全文页数:34页
- 资源格式: DOC
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
大学毕设论文--多元线性回归在房地产中的应用.doc
多元线性回归在房地产中的应用多元线性回归分析在房地产中的应用 摘 要近年来在国家促进中部崛起的政策的支持下,河南省经济近年来取得了快速的发展,经济的增长推动了房地产的完善和繁荣,然而居高不下的房价对人民的生活产生了重要的影响,也引发了社会的强烈关注。首先本文初步对影响商品房价格的主要因素做定性分析,在定性分析的基础上并以河南省为背景选取几个具有代表性的指标,采用多元线性回归的方法探求这些指标与商品房价格的线性关系。通过回归方程的显著性检验、残差分析最后建立了商品房价格与河南省GDP、河南省城镇化率的线性回归模型,得到结论:在长期中河南省商品房价格与河南省GDP,河南省城镇化同方向变化,并且可以预测在河南省经济不断发展的趋势下,河南省商品房价格依然会有所上涨。最后结合本文的研究内容给出了保证河南省商品房健康发展的政策建议。关键词: 商品房价格,多元线性回归,显著性检验,残差分析APPLICATION OF MULTIPLE LINEAR REGRESSION ANALYSIS IN THE REAL ESTATEABSTRACTIn recent years in countries to promote the support of the policies of central China, Henan Province in recent years rapid development, economic growth has promoted the improvement and prosperity of the real estate, but the high prices on the lives of people also led to the strong concern of the society. Firstly, qualitative analysis of a variety of factors that affect real estate prices, and then to identify important quantitative factors by multiple linear regression analysis to explain the relationship and impact of these factors and real estate prices. First, multiple linear regression the significance of applied research in the real estate and research status of a brief introduction. Second, multiple linear regression model and the steps to do a brief introduction, and the significance test of the theory and residual analysis theory. Third, qualitative analysis of the impact of factors that affect real estate prices, the establishment of commercial housing priceMultiple linear regression equations, the interpretation and analysis of influencing factors on the real estate according to the final regression equation.KEYWORDS: real estate prices, multiple linear regression, the significance test, and residual analysis目 录APPLICATION OF MULTIPLE LINEAR REGRESSION ANALYSIS IN THE REAL ESTATEII前 言1一、问题的背景和研究意义1二、国内外关于商品房价格的研究现状3第一章研究方法的理论基础5§1.1 多元线性回归模型6§1.2 多元线性回归模型的求解6§1.3 回归方程的显著性检验检验8§1.3.1 F检验8§1.3.2 T检验9§1.3.3 拟合优度检验10§1.4 残差分析10第二章影响商品房价格的因素11§2.1成本因素11§2.2经济因素11§2.3城镇化水平13§2.4政府因素14第三章商品房价格的线性研究15§3.1 多元线性回归模型建立15§3.1.1变量的选择和数据的搜集15§3.1.2变量的相关性分析及模型设定16§3.1.3模型求解过程18§4.1.3 残差分析22§4.2 多元线性回归模型解释25§4.3 本章小结26第四章河南省商品房价格发展趋势及建议26§5.1河南省商品房价格的发展趋势26§5.2河南省商品房价格的建议27结 论28一、本文的主要结论28二、本文不足和有待进一步研究的问题28三、论文体会28参考文献29致 谢30前 言一、问题的背景和研究意义 改革开放以来,特别是1988年取消福利分配制度以来,我国的房地产业进入了市场化的新阶段。房地产业的高速发展,使广大城镇居民的住房环境得到较大的改善和提高。房地产已成为我国国民经济中的基础性、先导性和支柱型产业。在20012010年期间我国GDP快速增长的同时,房地产开发投资获得更为强劲的增长,图1-1 GDP增长率,房地产投资率走势图这充分说明了我国房地产业的蓬勃发展,已经成为国民经济快速发展提供了强有力的保障和支撑。近几年来,房地产业受到各种因素的影响,在发展过程中出现了过热甚至产生泡沫现象。我国房价达到家庭收入的10-20倍。商品房的销售均价从1999年的2053元上升到3684元,年均增长7.7%。大中城市商品房的价格上涨幅度更大,城市房价的上涨幅度远远超过了工资上涨幅度,中低收入者无力购置住房。房地产市场供给结构不合理房地产价格的非理性上涨,必然会带来贫富差距的继续扩大,对社会的稳定带来负面影响。河南省作为我国中部经济发展大省,在国家政策的大力支持下,全省经济迅猛发展,特别是1990年以后,随着城市住房制度改革的不断深入,房地产开发初步形成了较为完善的市场体系,投资规模不断扩大,商品房销售不断增加。图1-2 河南省房地产开发投资量,商品房销售面积图2004年以来,国民经济持续快速健康发展,为河南房地产业持续快速发展提供了广阔的市场空间,同时商品房屋价格持续上扬。在这期间,全省商品房销售价格不断攀升,2006年全省商品房销售均价为2012元/平方米,比2004年增长了28.0%;2008年商品房销售均价达2342元/平方米,比2004年增长了49.0%。图1-3 河南省商品房均价图房价的形成及变化是多种因素共同作用的结果,不同的因素对房价的影响程度和作用机理有很大的不同,各种效应交织在一起导致了房价的波动起伏。本文以商品房地产价格作为研究对象,系统地定性分析了引起房价变动的因素,同时通过建立经济模型进一步实证分析了各因素与房价变动的数量关系,试图找出商品房地产发展过程中决定其价格的关键因素,以及各主要因素影响房地产价格的程度。房地产行业是中国经济的支柱产业,房地产业如何发展的问题已日益引起人们的广泛关注。越来越多的人从不同的角度来关注房地产业的发展以及价格走势,研究房地产的价格走势规律有其现实的实践意义,理论的发展对于产业的实际发展也起到积极的指导作用。同时,作为房地产经济运行中的重要变量,房地产价格的研究更是市场经济发展的现实需要。各个房地产市场主体都希望能够准确及时地预测房地产的价格趋势及规律,从而做出正确的投资经营决策。房地产业价格研究可以为河南省城市房地产制度的制订,进一步改进和加强房地产宏观调控,促进房地产业持续健康发展,提供更加坚实的理论基础和实证基础,具有重要的理论意义和现实意义。二、国内外关于商品房价格的研究现状房地产市场货币化改革以来,房价走高并且持续增长引起普遍关注,国内学者掀起了商品房价格问题的研究热潮,研究成果颇丰。谢经荣、朱勇、曲波等(2002)以货币供给量及资本市场有关指标作为解释变量,通过回归分析得出结论:房价与货币供给之间有强正相关关系,货币供给增加1%房价变动0625;房价与股价之间也有较强的正相关关系,上证指数每增加1,引起房价平均上涨0979元,深证指数每增加1,引起房价平均上涨0271元。 刘琳、刘洪玉(2003)从因果关系和数学关系两个方面,探讨了地价与房价的关系。因果关系分析结果认为,从需求的角度来看,房价上涨导致地价的提高:从供给角度来看,地价上涨是导致房价上涨的一个因素;在房地产市场运行过程中地价与房价相互转化。通过对二者的数学关系分析认为,地价与房价之间为线性正相关关系;地价与房价之间影响的程度因建安成本、税费率和容积率的不同而不同。李爱华(2006)以2004年北京市的相关数据为例,从城镇居民的消费结构与购房融资方式出发建立了住宅购买力模型,对高、较高、中、较低、低收入家庭的住宅购买力作了实证分析,并由家庭消费支出矩阵得出了各收入家庭可支付的住宅价格及可支付时的房价收入比。实证结果显示中低收入家庭在期房市场上购买力不足。国外房地产发展较早,房地产市场较为成熟。国外学者对房地产的理论研究也较早。Sean Holly,Natasha Jones(1997)运用1939年到1994年的数据,研究长期以来实际收入、人口变化、利率、住宅存量对英国房价的影响。研究结果表明,长期影响房价最重要的因素是实际收入,在长达60多年的时间里,房价与实际收入显著线性相关。Nellis,Longbottom(1981)通过供求定理进行推导,对英国房地产价格的研究结论表明,收入、贷款利率和贷款存量余额是影响房地产价格的主要因素。 综上所诉,国内外学术界对房地产价格进行了大量的理论和实证分析研究,丰富和发展了房地产理论,为政府的宏观调控政策提供了理论依据依据。三、研究内容与结构安排 本文共有五章内容,具体的安排如下:第一章:研究方法的理论基础。主要阐述了多元线性回归模型、模型求解的过程、回归方程的显著性检验及残差分析。第二章:影响商品房价格的因素。从商品房价格的几个主要因素出发,探讨这些因素与商品房价格的波动关系。第三章:商品房价格的线性研究。在一定数据基础上,运用SPSS统计软件,探求河南省商品房价格与土地价格指数、河南省DGP、河南城镇居民人均可支配收入、河南省物价指数及河南省城镇化率的多元线性关系,通过显著性检验、残差分析最后确立河南省商品房价格与河南省GDP、河南省城镇化率的线性模型,并对模型做出分析解释。第四章:河南省商品房价格发展趋势及建议。结合第四章的线性模型对未来河南省商品房价格未来发展趋势做出预测并给出一些政策建议。 第一章 研究方法的理论基础回归分析方法是多元统计分析的各种方法中应用最广泛的一种,它是处理多个变量间相互依赖关系的一种数理统计方法,变量间的相互依赖关系在实际问题中是大量存在的,回归分析是研究这种相互依赖关系的有效数学方法。回归分析方法是在众多相关的变量中,根据实际问题的要求,考查其中一个或几个变量与其余变量的依赖关系。如果只要考查某一个变量(常称为响应变量、因变量或指标)与其余多个变量(称为自变量或因素)的相互依赖关系,我们称为多元回归问题。在一元统计分析中讨论的多元回归是只考虑一个因变量的回归问题。回归分析是处理两个及两个以上变量间线性依存关系的一种数理统计方法。回归分析的基本思想是:虽然自变量和因变量之间没有严格的、确定性的函数关系, 但可以设法找出最能代表它们之间关系的数学表达形式12。回归分析方法是处理变量之间相关关系的有理工具,它不仅提供建立变量间关系的数学表达式经验公式,而且利用概率统计知识进行了分析讨论,从而判断经验公式的正确性。回归分析主要解决以下几方面的问题:a、确定几个特定变量之间是否存在相关关系,如果存在的话,找出它们之间合适的数学表达式;b、根据一个或几个变量的值,预报或控制另一个变量的取值,并且要知道这种预报或控制的精确度;c、进行因素分析,确定因素的主次以及因素之间的相互关系等等回归分析中,依据描述自变量与因变量之间因果关系的函数表达式是线性的还是非线性的,分为线性回归分析和非线性回归分析。通常线性回归分析法是最基本的分析方法,遇到非线性回归问题可以借助数学手段化为线性回归问题处理。同时,在经典计量经济学模型首先根据经济理论和样本数据设定模型的函数关系,然后估计函数关系中的参数并检验所设定的关系。如果模型的函数关系通过检验被证明是成立的,那么回归结果可以外延,其推断和预测都有较高的精度,模型的参数一般具有明确的经济意义,可以方便于各方面的应用。§1.1 多元线性回归模型被解释变量与多个解释变量之间具有线性关系,是解释变量的多元线性函数,称为多元线性回归模型。即 其中为被解释变量,为个解释变量,为个未知参数,为随机误差项。对于组观测值,其方程组形式为: 即其矩阵形式为=+则回归模型的矩阵形式为 §1.2 多元线性回归模型的求解对于含有个解释变量的多元线性回归模型设分别作为参数的估计量,得样本回归方程为: 观测值与回归值的残差为: 由最小二乘法可知应使全部观测值与回归值的残差的平方和最小,即使 取得最小值。根据多元函数的极值原理,分别对求一阶偏导,并令其等于零,即 即化简得下列方程组 上述个方程称为正规方程,其矩阵形式为 因为设为估计值向量样本回归模型两边同乘样本观测值矩阵的转置矩阵,则有 得正规方程组: 由假定,为阶方阵,所以满秩,的逆矩阵存在。因而 则为向量的OLS估计量。§1.3 回归方程的显著性检验检验§1.3.1 F检验对多元线性回归方程的显著性检验就是要看自变量从整体上对随机变量是否有显著性的影响。为此提出原假设 为了建立对进行检验的F统计量,我们利用总离差平方和的分解式,即: 简写为在成立的条件下,计算统计量 对于假设,根据样本观测值计算统计量给定显著水平,查第一个自由度为,第二个自由度为的分布表得临界值。当时,拒绝,则认为回归方程显著成立;当时,接受,则认为回归方程无显著意义。§1.3.2 T检验回归方程显著成立,并不意味着每个解释变量对被解释变量的影响都是重要的。如果某个解释变量对被解释变量的影响不重要,即可从回归模型中把它剔除掉,重新建立回归方程,以利于对经济问题的分析和对进行更准确的预测。为此需要对每个变量进行考查,如果某个解释变量对被解释变量的作用不显著,那么它在多元线性回归模型中,其前面的系数可取值为零。因此必须对是否为零进行显著性检验。(1)提出原假设;备择假设。(2)构造统计量,当成立时,统计量。这里是的标准差,为解释变量个数。(3)给定显著性水平,查自由度为的分布表,得临界值。(4)若,则拒绝,接受,即认为显著不为零。若,则接受,即认为显著为零。§1.3.3 拟合优度检验拟合优度用于检验回归方程对样本观测值的拟合程度。在多元线性回归中定义样本决定系数 样本决定系数的取值范围在区间内,越接近1,表明回归拟合的效果越好;越接近0,表明回归拟合的效果越差,因此可以清楚的直观地反映回归拟合的效果。 §1.4 残差分析一个线性回归方程通过了T检验和F检验,只是表明变量X和Y之间的线性关系是显著的,或者说线性回归方程是有效的,但不能保证拟合得很好,也不能排除由于意外原因而导致的数据不完全可靠,比如有异常值的出现、周期性因素干扰等。残差分析的目的就在于解决这一问题。所谓残差是指实际观察值与回归估计值的差,即 只有当与模型中的残差项有关的假定满足时,我们才能放心运用回归模型。因此,在利用回归方程作分析和预测之前,我们应该用残差图帮助我们诊断回归效果与样本数据的质量,检查模型是否满足基本假设,以便对模型做进一步的修改。 一、异方差检验。关于异方差检验,统计学家进行大量研究的研究,提出了许多诊断方法,主要有残差分析图分析法与等级系数法两种常用方法。本文采用残差图分析法。残差分析图是一种直观方便的分析方法。它以残差为纵坐标,以拟合值为横坐标,做出残差散点图。一般情况下,当回归模型满足所有假定时,残差图上的个点的散布是随机的,无任何规律。如果回归方程存在异方差时,残差图上点的散布呈现相应的趋势。二、自相关性诊断。由于误差项存在序列相关时给普通最小二乘法的应用带来了严重的后果,因此,如何诊断误差项是否存在序列相关就成为一个极其重要的问题。主要的诊断方法有图示检验法、自相关系数法、DW检验。本文采用图示检验法。图示法是一种直观的诊断方法,它是把给定的回归模型直接用普通最小二乘法估计参数,求出残差项,绘制的散点图。如果大部分点落在第一、三象限,表明误差项存在正的序列相关, 如果大部分点落在地二、四象限,那么误差项存在负的相关性,如果大部分点随机散布,那么误差项不具有相关性。三、正态性检验。如果误差项不服从正态分布,就会造成回归方程一些检验无法进行。残差呈现非正态分布的原因很多,如模型缺乏代表性、方差不等,因而需要进行正态性检验,其中最切实易行的办法就是画出残差直方图。如果残差直方图近似呈现正态分布,这可以说明误差项近似服从正态分布。 第二章 影响商品房价格的因素近年来不断上升的商品房价格逐渐成为人民关注的社会焦点,从政府决策者,研究学者,到普通民众都在探讨房价膨胀增长的原因。我们知道房价的影响因素是多样化的,在此我们从以下几个方面来探讨。§2.1成本因素地价是房地产成本的重要组成部分在房地产价格中,地价一般占有五至六成的比重,其走势直接影响着房价。随着国民经济和城市建设的发展,相关土地的出让价格会上涨,尤其是随着我国城市化进程的推进,城市土地资源日渐稀缺。房地产总量的有限性主要体现在土地总量的有限性上,土地供给的稀缺性、垄断性与土地需求的多样性及投机性,必然会导致土地价格的上扬,如果土地价格增加,那么房地产开发企业的成本必然增加,则利润率随之降低,这势必引起房地产投资规模下降,房地产市场的供给相应减少;相反,如果地价下降,企业利润率提高,则房地产供给相应增加。这势必影响房地产价格的涨跌。§2.2经济因素 房地产业作为市场经济的重要组成部分,决定了房地产与经济环境密切的联系,这些经济因素的变化在无时无刻不给房地产市场带来变化。其中主要有一下因素。一、国内生产总值房地产业因其基础性、先导性、支柱性的地位为社会创造了巨额的财富,成为国民经济的重要组成部分。高速发展的国民经济是房地产业健康发展的基础,房地产业的发展对于整个国民经济有着重大的贡献。根据国际经验,人均GDP在i000美元左右时,是一个国家房地产行业迅猛发展的黄金阶段。2005年我国人均GDP超过1700美元,与此相应,房地产行业进入了一个快速发展的黄金时期。GDP的波动变化与房地产行业有着很强的相关性。 二、城镇居民个人可支配收入城镇居民可支配收入可直接影响房价的波动。显而易见居民可支配收入提高,意味着住房购买力的提高,若是中、低收入水平者的收入普遍增加,则其边际消费倾向增大,其收入增加的部分就可能会用于提高居住质量,由于这一阶层的人数很多,所以对房地产的需求量大,自然会引起房地产价格的上涨;若是高收入水平者的收入增加,会带动房地产投资,也会引起房地产价格的上涨。图3-1 河南省城镇居民个人可支配收入,商品房均价走势图三、房地产开发投资由于我国的国民经济的持续发展和城市化的稳步推进,潜在的需求引起社会普遍的房价上涨预期,再加上银行利率较低等原因,使得大量的资金流入房地产产业,其他行业由于投资回报率低,也有部分资金流入房地产产业。图3-2 河南省房地产开放投资图绝大多数时候,当投资增长率上升时,房地产的增长率也在上升;反之,当投资率增长率下降时,房地产的增长率也在下降。可见,投资的变化与房地产业的发展有着高度的相关性。 四、物价水平 物价指数或通货膨胀率主要是通过两个途径对房地产经济波动产生影响。首先,通胀因素影响房地产名义价格与真实价值变动,物价指数或通胀率与房地产价格之间存在明显的正相关关系。一方面,当物价总体趋向上涨时,房地产名义价格随之上涨。另一方面建筑材料价格、建筑人工费等的上涨会推动房地产生产成本上涨,从而导致房价上涨。其次,通货膨胀使得影响房地产商品的保值与增值功能发生变动,进而影响房地产经济运行波动。通货膨胀时消费者宁愿持有真实资产而放弃货币资产,从而导致房地产投资活动的增加;反之会导致房地产投资活动的减少,这也会对房地产价格产生影响。§2.3城镇化水平加快城镇化进程是我国进入21世纪后的重要任务,2005年河南城镇化水平达到30%,已经进入城镇化加速时期,最近四、五年来河南省城镇化率一直保持快速增长,由此带来的商品房需求量是相当可观的,如2008年河南城镇人口为3575万,新增城镇人口4.7%,那当年人均住房面积22.7平方米计算,则城镇化带来了4176万平方米的潜在需求。国家统计局在全国抽样调查显示,目前中国每年新增1%的城市人口,大约为1800万-2000万,新增城市人口的住房需求将会很大。因此在未来随着河南城镇化率的不断提高情况下,对商品房的需求会不可避免的增加,加上国家房地产政策的影响,房地产的供应量相对缺乏,房价自然会呈现上涨的趋势。表2.1河南省城镇化率和商品房价格年份河南省城镇化率(%)河南省商品房价格(元/每平方米)200124.41239200225.81379200327.21399200428.91572200530.71800200632.52012200734.322832008362432200937.72671201038.8292§2.4政府因素对处于转轨时期的中国来说,政府不但是经济体制改革的推动者,同时还是产业政策的制定者和宏观经济的调控者。中国政府的政策行为强烈的影响着中国地产的发展。一、促进地方经济增长有统计资料表明,在2003年中国GDP增长的913个百分点中,有118个百分点是房地产业直接贡献的。中国房地产业还直接带动了57个相关产业的产出增加。因而,地方政府在资源约束的条件下,选择房地产这种操作性、掌控性很强的要素,直接、间接参与房地产市场,加大资源投入,推动GDP增长。二、增加地方政府财政收入分税制改革以后,从现今土地供给制度而言,地方政府可以获得三种收益:一是土地一级市场由地