应用统计学大作业.docx
中阂儿汕丸号(华东)CHINA UNIVERSITY OF PETROLEUM应用统计方法作业学 院:机电工程学院专 业:机械工程学 号:Z19040034姓 名:薛成智班 级:六班课堂编号:49任课教师:王清河日期:2019年11月30日= sj -= lyy - s£ = 357.9761111 - 110.4908445 = 247.4852666F =S)2F = S/(18-2-l)110.4908445/2247.4852666/15=3.348406738对于给定的8=010,查F(2,15)表得临界值入=2.70。由于F = 3.348406738人=2.70,所 以检验效果显著,即回归方程有意义。(3)检验与,2中每个参数对y的影响的显著性。取统计量靖/W计算得F = 6.132752934,尸2 = 0.780282023,对给定的oc= 0.10,查F(2,15)表得临界值入= 2.70。由于F = 6.132752934 > 2,70F2 = 0.780282023 < 2.70故在检验水平oc= 0.10下对v的影响显著,而不对V的影响不显著。(4)去掉外,再建立一元回归方程。 设所建立的一元线性回归方程为:夕=6 + bx1lly _ 560.405= Z7 = 3217.205=0.174190019- 1 1a = y-bx = x 1498.1 - 0.174190019 x x 1739.7 = 66.392312441818所以回归方程为y = 66.39231244 + 0.174190019%专业课题研究方案请自拟题目,结合自身的专业、科研方向、研究课题,选用至少一种本课程中学习的统 计方法,提出一个较为完整的研究方案。研究方案应包括:(1) 所研究问题的实际背景,研究意义和研究现状;(2) 应用的统计方法概述和模型的建立;(3) 研究目标、方案和技术路线;(4) 参考文献。其他课程内未讲授的统计方法也欢迎应用。预祝大家在后续的学习和研究中,能够依托 此研究方案,得到有意义的研究成果。关于重型卡车振动的影响因素分析1引言在工业生产中,重型卡车的应用是必不可少的,但是其在工作过程中往往会产生剧烈 的振动,影响着车辆的使用寿命和驾驶员的健康。因此找到造成卡车振动的影响因素是十 分必要的。目前关于汽车振动的研究工作主要聚焦在汽车内部,如汽车发动机所造成的振动、 汽车传动系统所造成的振动闺,其分析方法也多为基于ANSYS的有限元分析法或基于振动 频率求解的模态分析法。本文旨在采用统计学方法,对卡车内部和外在因素进行综合考 虑,通过安排合理的实验并对其结果加以分析,得出影响卡车振动的主要因素。2统计学模型的建立车辆在行驶过程中影响其振动强度的因素较多,包括质量、重心位置、行驶速度、车辆 加速度、路面粗糙度等等。综合处理后可得5个没有交互作用的因子:工作状态a、悬架 位置b、行驶速度c、发动机转速d,路面不平度e0其中工作状态包括空载和满载两个水 平,悬架位置包括前悬架和后悬架两个水平,行驶速度包括10km/h, 20km/h, 30km/h和 40km/h 四个水平,发动机转速包括 1050i7min、1400r/mins 1800r/min. 2050i7min 四个水 平,路面不平度包括B级、C级、D级、E级四个水平。冏其因子水平表见表1。表1因子水平表水平因子1234a空载满载b前悬架后悬架clOkm/h20km/h30km/h40km/hd1050r/min1400r/min1800r/min2050r/mineB级C级D级E级由于本实验因子和水平数众多,若进行全面实验将需要进行22 x 43 = 256次实验,工作 量大且成本很高。因此可采用正交实验设计方法来进行实验设计。正交试验设计,是指研究多因素多水平的一种试验设计方法。根据正交性从全面试验中 挑选出部分有代表性的点进行试验,这些有代表性的点具备均匀分散,齐整可比的特点。正 交试验设计的主要工具是正交表,试验者可根据试验的因素数、因素的水平数以及是否具有 交互作用等需求查找相应的正交表,再依托正交表的正交性从全面试验中挑选出部分有代表 性的点进行试验,可以实现以最少的试验次数达到与大量全面试验等效的结果.因此应用正 交表设计试验是一种高效、快速而经济的多因素试验设计方法。因此本实验采用匕6(甲)表, 此表可安排5个因子,其中2个二水平因子,3个四水平因子,将其实验安排列入表2中。表2实验结果分析表10abcde11111121122231233341244451123461114371241281232192134210214311122124122221313214231421314152224116221323研究目标、方案和技术路线本文主要研究重型卡车振动的影响因素,通过正交实验方法来设计实验,以达到减小 工作量、降低实验成本并获取较优解的目的。其中卡车速度通过汽车速度表读取,卡车加 速度采用便携式制动测试仪来进行测试。通过表2安排实验,并将实验结果用评分的方式评价,对所得分数进行处理,得到各 因子的对卡车振动的影响显著程度和主效应,以对下一步的减震工作提供指导。11参考文献1王博,张振东,于海生,程辉军,王晨,发动机起动引起的混合动力汽车振动分析与控制.汽车 Tg,2019,41(2):184-190.2张相群,麦承贤微型汽车传动系统振动与噪音研究装备制造技术,2010,;10-123高德峰,马志国,基于ADAMS矿用车辆平顺性影响因素分析.机械设计与制造,2018。(3);198-200.4 GB/T7031-1986, vehicle vibration describing method for road surface irregularity, Beijing: Standards Press of China, 1987.5麦炎渠,研究分析汽车加速度测量及在交通事故鉴定中的应用.大众汽车,2019,25;28-2912例3-7在某项实验中,测得变量y与因素x数据如表3-14所示,试建立适当的y与因素x 的回归方程(a=o.oi)。表3-14例3-7实测数据X23457810111415161819y106.42108.20109.58109.50110.00109.93110.49110.59110.60110.90110.76111. 00111.20解:绘制散点图,如图1所示。图1由图1可看出,以下5种曲线方程的曲线图都与散点图接近,因此都可以作为曲线回 归的选择对象。(1) y = 0o + 4i 4y = /+0i 1g- y = Bo + BJxy = /?o+用Inx(4) y = p0 + p1Vx1)方案1选取曲线回归(1)求解,令£ = 0 应用EXCEL可算得数据,列入表1,由表1 得。表1曲线(1)数据预处理计算Xxz = Vxyx'.-x'yt-y(x'i - 彳)( - 目21.414214106.42-1.62822-3.516155.72506046331.732051108.2-1.31038-1.736152.27502035542109.58-1.04243-0.356150.37126555252.236068109.5-0.80636-0.436150.35169801872.645751110-0.396680.063846-0.02532642682.828427109.93-0.214-0.006150.001316942103.162278110.490.1198470.5538460.066377012113.316625110.590.2741950.6538460.179281028143.741657110.60.6992270.6638460.464179228153.872983110.90.8305530.9638460.800525382164110.760.957570.8238460.788890134184.2426411111.200211.0638461.276839229194.358899111.21.3164691.2638461.663813861和39.551591429.1713.93894078平均3.04243109.9362平方和11.6670321.2105113lx,x, =- %')2 = 11.66703t=i 13lyy = (yf - y)2 = 21.21051i=l13lxly =- 3)(% -y)= 13.93894078i=l由此得瓦=产 lx>xf瓦=产 lx>xf13.9389407811.66703=1.194729K = y- 龈=109.9362 - 1.194729 x 3.04243 = 106.3013 故所求的回归方程为y = 106.3013 + 1.194729/ 进行变量还原得回归方程夕=106.3013 + 1.194729五检验假设“01: Si = 0s台=plx,y = 1.194729 X 13.93894078 = 16.65325Sj = lyy -略=21.21051 - 16.65325 = 4.557255=40.19652S$ 16.65325SL/Il = 4.557255/11对给定的a = 0.01,查F (1,11)表得临界值入= 9.65,由于F 入,检验效果显著,所 以拒绝“01,即方案(1)提供的回归方程有意义。2)方案2选取曲线回归(2)求解,令' = lgx,应用EXCEL可算得数据,列入表2,由表2得.表2曲线(2)数据预处理计算XX = lg Xyx'i - x'yt-y(x'i彳)3i一刃20.30103106.42-0.6166-3.516152.16804352930.477121108.2-0.4405-1.736150.76478258440.60206109.58-0.31557-0.356150.11238975650.69897109.5-0.21866-0.436150.09536729670.845098110-0.072530.063846-0.00463057980.90309109.93-0.01454-0.006158.94473E-05101110.490.0823750.5538460.045622977111.041393110.590.1237680.6538460.080924907141.146128110.60.2285030.6638460.151690742151.176091110.90.2584660.9638460.249121536161.20412110.760.2864950.8238460.236027641181.2552731110.3376471.0638460.359204808191.278754111.20.3611281.2638460.456410766和11.929131429.174.715045411平均0.917625109.9362平方和1.19471721,2105113z = J«-P)2 = 1.194717i=l13G = 一刃2 = 21.21051i=l13lxly = W(x'i - 7)(以 一刃=4.715045411i=l由此得说=号=lX>Xf说=号=lX>Xf4.7150454111.194717=3.946578Po=y-际=109.9362 - 3.946578 x 0.917625 = 106.3147 故所求的回归方程为y= 106.3147 + 3.9465787进行变量还原得回归方程y = 106.3147 + 3.946578 lg x检验假设Hoi: £1 = 0S篙=说l*y = 3.946578 x 4.715045411 = 18.6083S% = lyy -S% = 21.21051 - 18.6083 = 2.60221118.60832.602211/11=78.66052对给定的a = 0.01,查F (1.11)表得临界值入= 9.65,由于F 入,检验效果显著,所 以拒绝1,即方案(2)提供的回归方程有意义。3)方案3选取曲线回归(3)求解,令应用EXCEL可算得数据,列入表3,由表3得。表3曲线(3)数据预处理计算XX' = 1/xy- yx't - x'Xyt - y)20.5106.420.34224-3.51615-1.20336796830.333333108.20.175573-1.73615-0.30482205940.25109.580.09224-0.35615-0.03285157850.2109.50.04224-0.43615-0.01842307370.142857110-0.01490.063846-0.000951580.125109.93-0.03276-0.006150.000201601100.1110.49-0.057760.553846-0.031990236110.090909110.59-0.066850.653846-0.043710307140.071429110.6-0.086330.663846-0.057310886150.066667110.9-0.091090.963846-0.087800103160.0625110.76-0.095260.823846-0.078479708180.055556111-0.10221.063846-0.108729964190.052632111.2-0.105131.263846-0.132866339和2.0508821429.17-2.101102119平均0.15776109.9362平方和0.21367121,2105113lx,x, = W(,L J/ = 0.213671i=l13(y = W(为 一刃之= 2L21051i=iy = 111.4875 - 9.83337/13lxly = W("'i - 7)8-力=-2.101102119 i=l由此得ftPo = y- B3 故所求的回归方程为为少-2.1011021190.213671=-983337=109.9362 - (-9.83337) X 0.15776 = 111.4875进行变量还原得回归方程1y = 111.4875 -9.83337-x检验假设Hoi: Si = 0s台=讯4y = (-9.83337) X (-2.101102119) = 20.66092= Uv - S. = 21.21051 - 20.66092 = 0.549586 找 yy 回s' 20.66092=诉=0.549586/11 = 413.5295对给定的a = 0.01,查F (1,11)表得临界值人= 9.65,由于F 入,检验效果显著,所 以拒绝1,即方案(3)提供的回归方程有意义。4)方案4选取曲线回归(4)求解,令,= lnx,应用EXCEL可算得数据,列入表4,由表4得。表4曲线(4)数据预处理计算13X= nxyx't - x'yt-y(吟三)工一力20.693147106.42-1.41976-3.516154.99210471231.098612108.2-1.0143-1.736151.76097697841.386294109.58-0.72662-0.356150.25878697651.609438109.5-0.50347-0.436150.21959131471.94591110-0.1670.063846-0.01066230282.079442109.93-0.03347-0.006150.00020596102.302585110.490.1896750.5538460.105050787112.397895110.590.2849850.6538460.186336485142.639057110.60.5261470.6638460.349280841152.70805110.90.595140.9638460.573623535162.772589110.760.6596790.8238460.543473728182.8903721110.7774621.0638460.827099636192.944439111.20.8315291.2638461.050924625和27,467831429.1710,85679328平均2.11291109.9362平方和6.33426921.210518 = W(吟一亍)2 = 6.334269i=i13/yy = (yf-y)2 = 21.21051 i=l13lxfy = 2(当一 ?)(% 一刃=10.85679328(=1由此得-lXfy 10.85679328周=产= c =L713977lx,xi 6.334269瓦=一瓦彳=109.9362 - 1.713977 x 2.11291 = 106.3147 故所求的回归方程为y=进行变量还原得回归方程y = 106.3147- 1.713977 Inx检验假设41: 0i = 0S=瓦=1.713977 X 10.85679328 = 18.6083SQ = lyy _= 21.21051 - 18.6083 = 2.60221118.6083S2=78.66052=78.66052F二 回_-5/11 - 2.602211/11对给定的a = 0.01,查F (1,11)表得临界值入= 9.65,由于F 入,检验效果显著,所以拒绝为i,即方案(4)提供的回归方程有意义。5)方案5选取曲线回归(5)求解,令/ =以,应用EXCEL可算得数据,列入表5,由表5 得。表5曲线(5)数据预处理计算13Xxr = VxYx' i - x'yi-y(%-二)(%一刃21.259921106.42-0.81517-3.516152.86627649631.44225108.2-0.63285-1.736151.09871676841.587401109.58-0.48769-0.356150.17369402251.709976109.5-0.36512-0.436150.15924801471.912931110-0.162160.063846-0.01035352782109.93-0.07509-0.006150.000462122102.154435110.490.079340.5538460.043942065112.22398110.590.1488850.6538460.097348041142.410142110.60.3350470.6638460.222419937152.466212110.90.3911170.9638460.376976831162.519842110.760.4447470.8238460.36640331182.6207411110.5456471.0638460.580483976192.668402111.20.5933071.2638460.749848514和26.976231429.176.725466571平均2.075095109.9362平方和2.60932921,21051lxlxr =- PT = 2.609329t=i13/yy = W(/一刃之= 2121051i=l13lxfy = 2(吟-亍)(% )=6.725466571i=i由此得=2.57747=2.57747%, -6.725466571P1 - lx,x, 2.609329瓦二9一一一 =109.9362 - 2.57747 X 2.075095 = 104.5877 故所求的回归方程为进行变量还原得回归方程检验假设Hoi: Bi = oy = 104.5877 - 2.57747/y = 104.5877 - 2.57747班S篙=瓦/7=2.57747 x 6.725466571 = 17.33469S篙=21.21051 - 17.33469 = 3.875822s' 17.33469时而? = 3.875822/11 = 4219771对给定的a = 0.01,查F (1.11)表得临界值入= 9.65,由于F 入,检验效果显著,所 以拒绝即方案(5)提供的回归方程有意义。将上述5个方案进行整合,得下表6表6方案回归方程F1y = 106,3013 + 1.194729G4.55725540.196522y = 106.3147 + 3.946578 Igx2.60221178,6605231 y = 111.4875 + 9.83337- X0.549586413.52954y = 106.3147+ 1.7139771nx2.60221178,660525y = 104.5877- 2.57747以3.87582249,19771经过对比,方案3的残差平方和最小,因而其回归方程最优,拟合效果最好,方案2 和方案4次之,方案5再次,方案1最差。习题5研究平炉炼钢的效率y与出钢量 M 和FeO(X2)的关系,测得数据如下:115.396.556.9101.0102.987.9101.4109.8103.4x214.214.614.914.918.213.213.520.013.0y83.578.073.091.483.482.084.080.088.0X1110.680.393.088.088.0108.989.5104.4101.9X215.312.914.716.418.115.418.313.812.2y86.581.088.681.585.781.979.189.980.6(1)建立y关于右,右的线性回归方程。(2)检验所建立方程是否有意义(a = 0.10)。(3)检验%2是否对y有显著影响a = 0.10)。(4)如果有对y影响不显著的变量,将其去掉再建立一元回归方程。 解:(1)设所建立的线性回归方程为:夕=瓦+瓦+茂%2应用EXCEL,求得数据见表1表1数据预处理计算XlX2yxl埠XlX2x2yy21115.314.283.513294.09201.641637 269627.551185.7697225296.514.6789312.25213.161408.975271138.86084356.914.9733237.61222.01847.814153.71087.75329410114.991.410201222.011504 99231.41361.868353965102918.283.410588.41331.241872.788581.861517.886955 56687.913.2827726.41174.241160.287207.81082.467247101.413.58410281.96182.251368.98517.61134705681098208012056.0440021%87841600640091034138810691.561691344.2909921144774410110615.386.512232.36234 091692189566 91323.457482 251180.312.9816448.09166.411035.876504.31044.96561129314.788.68649216.091367.18239.81302.427849.96138816.481.57744268.961443.271721336.6664225148818.185.77744327.611592.8754161551,1773444915108.915.481.911859.21237.161677.068918.911261.266707.611689.518.379.18010.25334.891637.857079.451447.536256.8117104413.889.910899.36190.441440.729385 561240.628082.0118101912.280.610383.61148.841243.188213.14983.326496 36和1739.7273.61498.1171359.24240.0426470.99145351.822743.61125041.5由表1得18% = 2 吟- 18 X 万2 = 171359.2 X 1739.72 = 3217.205 i=l18l12 = W / 1 阳2 - 18 X = 26470.99- -x 1739.7 x 273.6 = 27.55 i=l1822 =乏的 - 18 x 石2 = 4240.04 -磊 x 273.62 = 81.32 i=l18lly = WyiXn - 18 x xj-y = 145351.8-x 1739.7 x 1498.1 = 560.40518l2y = Wy/i2 - 18 x 双歹=22743.61 -得 x 273.6 x 1498.1 = -27.51 i=l18力=W* - 18 x V = 125041.5- -x 1498.12 = 357.9761111t=l解正规方程3217.205瓦 + 27.55-2 = 560.40527.55瓦 + 81.32-2 = - 27.51273.6x= 72.119151118得瓦=0.1776,瓦=-0.39846,从而_1498.11739.7 ,仇=歹仇石-b2xi = 0.1776 x - (-0.39846) lolo得回归方程为y = 72.1191511 4- 0.17764 - 0.39846x2Sg =+ l2y = 560.405 x 0.1776 + (-27.51) x (-0.39846) = 110.4908445