欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    计量经济分析(第六版)答案 Midterm01.docx

    • 资源ID:86493191       资源大小:15.04KB        全文页数:3页
    • 资源格式: DOCX        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    计量经济分析(第六版)答案 Midterm01.docx

    NAMEEconometrics I, Fall, 2001, Professor W. Greene Midterm Examination.1. Consider random sampling from the normal distribution with mean 日 and variance a2. Xi N|i,o2, i =For a random variable X which is normally distributed, the variable Y = ex has a lognormal distribution with meanEy = +<j2/2= y and VarY=#+措(炉 _We are interested in estimating y = EY. The obvious candidate would be thesample mean, Y = £匕=一£/' But, there is another estimator. Using the z=l Z=1original data, let X and s2 be the sample mean and variance of the X's. Then,it,人X+q2 / 2the alternative estimator is / = e .a. Are either of these estimators unbiased? Explain.b. Are either of these estimators consistent? Explain2. Referring to the variables in question 1, we also have the following exact results: Var X = cy2 / n, Vars2 = 2cy4/n, Cov X ,s2 = 0.VarK = VarY / n was given above in question 1.a. How would you find the asymptotic variance of / = ex+s .b. How would you determine which of the two proposed estimators of EYJ is more efficient asymptotically?3. In computing the least squares estimator in the regression of y on l,xi,X2,d,t where "1" is a constant term, xi and X2 are two variables, d is a dummy variable and t is a time trend (1,2,T), let XI = xi,X2 and let X2 =l,d,t. Which of the following would produce an unbiased estimator of the parameters in the modelY = Xlpi + X2p2 + £Explain in each case. Hint: None of these require long matrix algebra proofs. Just think about each one. Answers should only be one or two lines of explanation in each case.(a) Regress y on XI and X2(b) Regress X2 on XI and compute fitted values for X2, then regress Y onXI and these fitted values for X2.(c) Regress y on XI and compute residuals, y* Regress y* on XI and X2.(d) Regress X2 on XI and compute residuals. Regress y on these residuals.4. Suppose you have used least squares to estimate a demand equation for a monopolist. You also know that marginal cost is constant, at, say, MC Your estimated demand equation isPrice = a + bQuantityThe optimal (profit maximizing) quantity equates marginal revenue, a + 2bQ, to MC, producing a solution Q* = (MC - a)/2b. (b is negative). You have the least squares coefficent estimates and the 2x2 estimated covariance matrix in hand.a = 60100 -10-102b = -3Estimated covariance matrix =MC =24How would you form a confidence interval for Q*5. In the regression results below, the variables are:N = 150, sample of the work force behavior of married women, taken in 1975, used in the Mroz paper referenced in your text,Y = hourly wage, the dependent variable. This is in $ per hour.KIDS 二 a dummy variable = 1 if there are children under 18 living in the home.AGE 二 age in yearsAGESQ = square of ageEDUC = educationa. Is the effect of having children in the home statistically significant? Explainb What is effect of an additional year in “age" on the expected wage fbr a 30 year old woman?c. How would you form a confidence interval for the estimated effect that you found in part b?d. How would you test the hypothesis that age has no effect on WAGE in this model? Explain in detail.6. Referring to the model in question 4, one might hypothesize that the presence of young children completely alters the wage/education profile. To investigate that possibility, the following three regressions give results for the full sample, families with children and families with no children.a. How would you test the hypothesis that the same regression applies to both subgroups?b. Can you see any evidence in the results below whether women with children have higher or lower wages than women without children?All Families, KIDS appears in the reeression. Use for Question 5.+I Ordinary least squares regression Weighting variable = none |I Dep. var. = WAGE Mean= 3.792050000, SD,=2.342414629|I Model size: Observations =150, Parameters =5, Deg.Fr.=145 |I Residuals: Sum of squares= 674.2375198, Std.Dev.=2.15637 |I Fit:R-squared= .175294, Adjusted R-squared =.15254 |I Model test: F 4 f145 =7.71, Prob value =.00001 |+I Variable|Coefficient|Standard Error|t-ratio|P|T|>t|Mean ofX|+Constant-6.7875247695.0447230-1.345.1806KIDS-1.126731368.45458453-2.479.0143.66000000AGE.3119934568.233749811.335.184142.786667AGESQ-.003957994169.0027314125-1.449.14951901.0267EDUC.4349928716.0836213975.202.000012.640000This is theestimated covariance matrixfor the coefficientestimates.123451125.4492.3275-1.1410.0131-.130221.3275.2066-.0259.0004-.004331-1.1410-.0259.0546-.0006.002241.0131.0004-.0006.00000460614 -.0000253330351-.1302-.0043.0022-.00002533303.0070All families+I Ordinary least squares regression Weighting variable = none |I Dep. var. = WAGE Mean= 3.792050000, SD=2.342414629|I Model size: Observations =150, Parameters =4, Deg.Fr.=146 |I Residuals: Sum of squares= 702.8039766, Std.Dev.=2.19402 |I Fit:R-squared= .140353, Adjusted R-squared =.12269 |I Model test: F3,146 =7.95, Prob value =.00006 |+I Variable|Coefficient|Standard Error|t-ratio|P|T|>t|Mean ofX|+4-+Constant-5.0016342585.0801906-.985. 3265AGE.1707522643.23065611.740.460342.786667AGESQ-.001952378674.0026543577-.736.46321901.0267EDUC.4113360731.0845255754.866.000012.640000Families with Children+I Ordinary least squares regression Weighting variable = none |I Dep. var. = WAGE Mean= 3.618494949, S.D.=2.168827626|I Model size: Observations =99, Parameters =4, Deg.Fr.=95 |I Residuals: Sum of squares= 411.8075395, Std.Dev.=2.08202 |I Fit:R-squared= .106657z Adjusted R-squared =.07845 |I Model test: F 3Z95 =3.78z Prob value =. 01304 |+4-+I Variable|Coefficient|Standard Error|t-ratioIP|T|>t|Mean ofX|+Constant-16.369942018.3220409-1.967.0521AGE.7832912943.401493691.951.054039.707071AGESQ-.009508912588.0049393377-1.925.05721622.6970EDUC.3372655578.113692172.966.003812.797980Families with no chldren+I Ordinary least squares regression Weighting variable = none |I Dep. var. = WAGE Mean= 4.128950980, S.D.=2.637440831|I Model size: Observations =51z Parameters =4, Deg.Fr.=47 |I Residuals: Sum of squares= 233.2955027, Std.Dev.=2.22794 |I Fit:R-squared= .329234, Adjusted R-squared =.28642 |I Model test: F3,47 =7.69, Prob value =. 00028 |+4-IVariable|Coefficient|Standard Error|t-ratio|P|T|>tIMean ofX|+Constant6.4550570909.4372178.684.4973AGE-.3032343154.39863070-.761.450648.764706AGESQ.002569488111.0043602988.589.55852441.3137EDUC.5017377974.128003413.920.000312.333333

    注意事项

    本文(计量经济分析(第六版)答案 Midterm01.docx)为本站会员(太**)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开