欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    计量经济分析(第六版)答案 Notes-22.docx

    • 资源ID:86496450       资源大小:13.44KB        全文页数:3页
    • 资源格式: DOCX        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    计量经济分析(第六版)答案 Notes-22.docx

    Econometrics IProfessor William GreeneNotes 22. Two Step ML and GMM EstimationI. Two step estimationA. Setting, fitting a model which contains parameter estimates from another model.B. Typical application, inserting a prediction from one model into another.C. Procedures: How it*s done.D. Asymptotic results:1. Consistency2. Getting an appropriate estimator of the asymptotic covariance matrix3. The Murphy - Topel result (Next page)E. Application: Equation 1: Number of children Equation 2: Labor force participationII. GMM estimationA. "Moment Equations11 Examples:1. From familiar estimation settings:a. Least squaresb. Instrumental variablesc. Maximum likelihood estimation2. From behavioral models:E(ct - some expectation) | some set of variables in an information set = 0 What does this imply?B. The Method of Moments. Solving the moment equations1. Exactly identified cases2. Overidentified casesC. Consistency. How do we know the method of moments is consistent?D. Asymptotic covariance matrix.E. Consistent vs. Efficient estimation1. A weighting matrix2. The minimum distance estimator3. What is the efficient weighting matrix?4. Estimating the weighting matrix.F. The Generalized method of moments estimator - how it is computed.G. Computing the appropriate asymptotic covariance matrixIII. Testing Hypotheses in the GMM framework.A. Testing hypotheses about the parameters:1. Wald Test2. A counterpart to the likelihood ratio testB. Testing the overidentifying restrictionsIV. Application (Monday)? Data transformations. Number of kids, scale income variables * Create ; Kids = kl6 + k618;income = faminc/10000 ;Wifeinc = ww*whrs/1000 $? Equation 1, number of kids. Standard Poisson fertility model.? Fit equation, collect parameters Thetal and covariance matrix VI ? compute fitted values. Namelist; Z = one,wa,we,income,wifeinc$ Poisson ; Lhs = kids;Rhs = Z $Matrix ; Thetal = b ;VI = VARB $Create ; ExpKids = Exp(Z1Thetal) $ ? Set up probit labor force participation model ? Compute probit model and collect results. Gamma = coefficient on ? fitted number of kids. Collect Theta2 and V2 as above.Namelist; X = one,wa,we,ha,he,income $Namelist; XF = X,ExpKids $ Probit ; Lhs = Ifp;Rhs = X,ExpKids $ Calc ; gamma = b(kreg) $ Matrix ; Theta2 = b;V2 = VARB $Create ; bxf = Xf1Theta2 $ *? Poisson log likelihood Zi (kidSiXZi10i - exp(Ziz0i) - logkidsi!)? Derivative of term with respect to 0 is (kidSi - exp (Zii) ) xzi *Create ; gl = Kids - ExpKids $ *? Probit, logL = 2 (lfp=0) log(-P* - y exp (Zi'Oi)?+E (lfp=l) log(+0'Xi + y exp(Zi。)? Obtain this with one term by using 2*lfp - 1 = -1 or +1 for 0 or 1.? This is the derivative with respect to the argument of .;g2 = (2*lfp-l)*N01(bxf)/Phi(2*lfp-l)*bxf) ? These are the terms that are used to compute R and C. ?* Typo in your text. Delete (1/n) in C-hat and R-hat on page 135.;vc = g2 * g2*gamma*ExpKids;vr = g2 * gl $? Compute matrix products and report resultsMatrix ; R = Xf1vrZ;C = Xf1vcZ;Q = C*Vl*Cf - R*Vl*Cf - C*Vl*Rf;V2s = V2 + V2*Q*V2;Stat(Theta2fV2s)$+I Poisson RegressionKIDS|ONE|250|7|-367.9654|-432.0402|128.1496|4|.0000000|RsqP= .2720|RsqD= .3108|+I Maximum Likelihood Estimates I Dependent variableI Weighting variableI Number of observationsI Iterations completedI Log likelihood functionI Restricted log likelihoodI Chi-squaredI Degrees of freedomI Significance levelI Chi- squared =263.00713I G - squared =284.19970+I Variable|Coefficient|Standard Error|b/St.Er. |P|Z|>z|Mean ofX|+Constant3.436586649.430037867.991.0000WA6765766674E-01.67769033E-02-9.984.0000WE1957100726E-01.27310844E-01-.717.4736INCOME.6461865674E-01.38825572E-011.664.0960WIFEINC4622239565E-01.14329665E-01-3.226.0013(Note: E+nnor E-nn meansmultiply by 10to + or -rm power.)42.92000012.3520002.30625403.1035352+I Binomial ProbitModel|I Maximum LikelihoodEstimates|IDependent variableLFP|IWeighting variableONE|INumber of observations250|IIterations completed6IILog likelihood function-132.0586|IRestricted log likelihood-168.2529|IChi-squared72.38862|IDegrees of freedom6IISignificance level.0000000|+I Variable | Coefficient | Standard Error |b/St.Er.|P|Z|>z | Mean of X| +Index function for probabilityConstant12.884250152.09230216.158.0000WA-.2114374146.37956821E-01-5.570.000042.920000WE.6868897361E-01.55472307E-011.238.215612.352000HA-.1926323530E-01.22665533E-01-.850.395445.024000HE-.1057757370E-01.37641934E-01-.281.778712.536000INCOME.1020796842.79918260E-011.277.20152.3062540EXPKIDS-2.197363852.31891089-6.890.00001.6000000-> Matrix ; R = Xf»vrZ;C = Xf'vcZ;Q = C*V1*C! - R*V1*C' - C*V1*R*;V2s = V2 + V2*Q*V2;Stat(Theta2zV2s)$Matrix statistical results: Coefficients=THETA2Variance=V2S+|Variable | Coefficient | Standard Error |b/St.Er.|P|Z|>z |+THETA_112.884250152.81455324.578.0000THETA12-.2114374146.43778989E-01-4.830.0000THETA13.6868897361E-01.93577162E-01.734.4629THETa14-.1926323530E-01.23485205E-01-.820.4121THETA5-.1057757370E-01.47240796E-01-.224.8228THETA6.1020796842.20901593.488.6253THETA_7-2.197363852.49750060-4.417.0000

    注意事项

    本文(计量经济分析(第六版)答案 Notes-22.docx)为本站会员(太**)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开