欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    汽车自动驾驶专题报告.docx

    • 资源ID:86637470       资源大小:40.13KB        全文页数:22页
    • 资源格式: DOCX        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    汽车自动驾驶专题报告.docx

    汽车自动驾驶专题报告1、自动驾驶三大系统:感知、决策、执行驾驶技术的发展是将人类驾车替换为机器驾车的过程,因此可以拿人类驾车作类 比,自动驾驶技术分为感知决策和执行三大核心环节。感知指对于环境的场景理解能力。例如障碍物的类型、道路标志及标线、行车车 辆的检测、交通信息等数据的分类。目前存在两种主流技术路线,一种是以特斯 拉为代表的以摄像头为主导的纯视觉方案;另外一种是以谷歌、百度为代表的多 传感器融合方案。根据融合阶段不同分为前融合和后融合。前融合指的是把所有 传感器的数据作为整体进行识别,后融合指的是将不同传感器识别后的结果进行 整合。决策是依据驾驶场景、驾驶需求进行任务决策,规划出车辆的路径和对应的车身 控制信号。分为任务决策、轨迹规划、跟踪控制和执行控制四个阶段。在决策的 过程中需要综合考虑安全性、舒适性和到达速度。执行指的是将控制信号发送给执行器,执行器执行的过程。执行器有转向、油门、 刹车、灯光档位等。由于电动汽车执行器执行较线性,便于控制,因此比燃油车 更适合作为自动驾驶汽车使用。为了实现更精确的执行能力,线控转向、线控刹 车、线控油门等技术不断发展。(报告来源:未来智库)2、自动驾驶分级2. 1L1-L2为驾驶辅助,L3-L5为自动驾驶国家标准GB/40429-2021和SAEJ3016明确定义了汽车自动驾驶分级,将驾驶自动 化分为0级至5级。其中定义等级的原则是1)自动化驾驶系统能够执行动态驾 驶任务的程度。2)驾驶员的角色分配。3)有无允许规范限制。国标规定L1和 L2级自动化系统命名为“驾驶辅助系统"、L3-L5命名为“自动驾驶系统”。为代表的自动驾驶封闭场景由于环境相对简单与封闭、权责划分清晰等特点,在 政策与需求的推动下发展迅速。2021年,国内新建多个全自动化码头,带动港口 自动驾驶商业化运营取得实质性突破;同时在智慧矿山建设趋势下,多个大型矿 区自动驾驶项目正进入试运营与测试阶段。我们判断:1)短期内将会有更多企业认识到开放场景下自动驾驶的难度,从而改 变战略进入封闭场景赛道。2) B端场景客户多为成本导向,将自动驾驶汽车视为 生产力工具,因此平衡安全性和经济性是自动驾驶企业追求的目标。4. 3发展路线之争退朝、深度神经网络将会取代人工规则在行业发展早期存在自动驾驶发展路线之争,存在从L1开始逐渐实现L4的渐进 式和直接研发L4的跨越式。车企背景的自动驾驶企业的研发思路是从L1开始逐 渐添加新功能直到实现L4,代表企业有博世、Mobileye等。但是百度、Waymo为 代表的部分互联网背景的企业则采用一步到位的方法直接研发L4级别的自动驾驶, 期望用技术颠覆行业。但近年来随着人工智能技术的发展,渐进式和跨越式发展 的边界逐渐模糊。人工智能的发展让软件从基于规则的系统(RulebasedSystem)进化至基于学习的 系统(LearningBasedSystem),这对软件的决策流程有了深远的影响。RulebasedSystem(基于规则的系统)是指人类用归纳的方法使用一系列的规则,试 图推导出所需目标的系统。这一系统无法处理诸如物体识别和路径规划等复杂问 题。LearningBasedSystem(基于学习的系统)是不预设规则,让系统从案例中学习规则 的系统。深度学习就是这样一类系统。与基于规则的系统相比,基于学习的系统 由于不需要预设规则,因此更加适合处理复杂任务。低阶自动驾驶很多是基于规则的系统。在神经网络爆发之前,传统的感知算法都 是传统计算机视觉方法,这些方法使用基于规则的决策逻辑,人为设置一系列规则,硬编码至系统中。由于不需要海量数据,因此泛化能力不足,使用场景有限, 但该类方法对算力要求低、成本低,因此部署容易,广泛存在于LI、L2级别的自 动驾驶汽车上。在基于规则的逻辑指导下,车企将自动驾驶分为两个域“泊车 域” 和“高速域”,APA、RPA等功能由泊车域控制器控制,ACC、TJP功能由高 速域控制器控制。车企会分别定点不同供应商,技术栈并不互通,场景也不互通。 在经纬恒润公布的招股书中就可以发现,“泊车域控制器”和“高速域控制 器” 为两个不同的硬件产品,功能与用途也完全不一致。高阶自动驾驶神经网络正在取代基于规则的系统。在神经网络爆发之后,行业部 分学者推崇端到端的学习方式,从传感器采集到的数据中直接训练学习自动驾驶 所需的算法。特斯拉在自身的自动驾驶FSD中引入了单堆栈统领所有(OneStacktoRulethemAll) 的概念,即用神经网络取代之前人工定义的规则,不断增加深度神经网络在整体 软件系统中的比例,用神经网络取代之前硬编码的规则,最终实现FSD、泊车、 召唤等功能都由同一个软件来实现的目标。我们判断:1)低端自动驾驶辅助功能(L2及以下)和高端自动驾驶辅助功能(L3及以上)将会使用不同的技术栈,低阶驾驶辅助功能使用基于规则的系统, 高阶自动驾驶功能使用神经网络。2)低阶和高阶自动驾驶功能将并存,服务不同 需求的消费者。低阶驾驶辅助的优势是成本,高阶自动驾驶功能的优势是功能适 用范围广。5、路线之争:5. 1单车智能VS车路协同:单车智能为主,车路协同为辅产业优势不同,决定技术方向不同。自动驾驶路线之争的本质是各个国家优势产 业不同,中国的优势在于通讯行业,美国优势在于半导体行业。因此中国选择单 车智能为主车路协同为辅的路线,美国选择单车智能的路线。单车智能采用车用 传感器进行识别,并在车端进行决策与执行。车路协同需要在道路上安装传感器, 将道路改造成“智能的道路”,通过V2X技术将行人、车道、车辆信息发送给汽 车。车路协同技术可以降低车端的传感器和计算平台要求,将成本转移至云端。单车智能:商业模式顺畅,下游消费者付费意愿强。单车智能模式下的自动驾驶 商业模式较为简单,上游零部件企业(传感器、芯片、域控制器、线控底盘)为 中游整车厂提供零部件,下游消费者花钱购买自动驾驶功能。2021年后上市的高 端新能源车型普遍为后续更加高阶的自动驾驶预留足够的传感器与算力资源。以蔚来、理想、小鹏的旗舰车型为例,它们均配备了激光雷达和算力过剩的英 伟达Orin芯片。虽然暂时高阶自动驾驶功能还在研发中,但车企足够的硬件冗 余支持后续通过OTA迭代实现更高阶的自动驾驶功能。车路协同:市场潜力巨大,但短期面临商业模式的挑战。在新基建的背景中,现 有的车路协同项目多为ToG业务,政府支持自动驾驶企业在示范区内开展业务, 缺乏终端消费者为车路协同业务付费的环节。同时车路协同在国内尚缺乏通用标 准,企业仍需各自摸索,因此车路协同若要进入良性发展循环,平衡政府、车厂、 公路运营单位等多方的利益诉求必不可少。车路协同的核心技术是通讯,C-V2X是当前车路协同的主要发展方向。由我国主 导设立的C-V2X标准是世界智能驾驶发展的主流,目前正处于商业落地阶段。5. 2纯视觉VS多传感器融合:技术之争短期内难有结果单车智能技术在路线上存在两个方案:纯视觉方案和多传感器融合方案。纯视觉方案推动方主要为特斯拉,方案中摄像头起主导作用,需要将多摄像头捕 捉的2D图像映射到3D空间中,因此对算法与算力的要求高。2021年北美地区上 市的Model3和ModelY取消了雷达,仅仅搭载了 8个摄像头。多传感器融合方案,主要推动者为Waymo和英伟达,方案中引入了可以直接测量 距离的激光雷达,辅助摄像头计算物体的距离和速度,可以快速地构建环境3D模 型。技术差距和成本偏好造成企业路线选择不同。企业可以增加传感器数量从而降低 对于高精度算法的依赖,我们认为方案的选择更多体现的是企业对于技术和成本 偏好。国内企业在纯视觉路线上落后于特斯拉,多传感器融合方案可以摆脱对视 觉技术的依赖,但需要增加昂贵的激光雷达,若需要配备一颗主激光雷达和两颗 辅激光雷达,则成本上会增加很多。多传感器融合方案中,根据融合和感知次序可以分为前融合与后融合。前融合算 法:传感器将原数据传递给感知层,感知层直接预测,体现了基于学习的系统 中 “端到端”的思想。后融合:每个传感器独立完成目标感知,再由另一个感知 层进行数据融合。我们认为由于前融合可以体现深度学习中“端到端”的训练方 法,引入更少的人工策略,未来将会有更优秀的表现。6、驾驶的三大核心要素:传感器、计算平台、数据与算法6.1传感器:不同定位与功能,优势互补自动驾驶汽车往往配备了多种传感器,包括摄像头、毫米波雷达、激光雷达。这 些传感器各有不同的功能与定位,优势互补;作为一个整体,成为了自动驾驶汽 车的眼睛。2021年以后的新车都配备了大量的传感器,目的是预留冗余硬件,以 便后续通过0TA的方式实现更多自动驾驶功能。摄像头:行业受到消费电子景气度影响摄像头的作用:主要用于车道线、交通标示牌、红绿灯以及车辆、行人检测,有 检测信息全面、价格便宜的特征,但会受到雨雪天气和光照的影响。现代摄像头 由镜头、镜头模组、滤光片、CMOS/CCD. ISP,数据传输部分组成。光线经过光 学镜头和滤光片后聚焦到传感器上,通过CMOS或CCD集成电路将光信号转换成电 信号,再经过图像处理器(ISP)转换成标准的RA肌RGB或YUV等格式的数字图 像信号,通过数据传输接口传到计算机端。摄像头可以提供丰富的信息。但是摄 像头依赖自然光源,目前视觉传感器的动态做得不是特别宽,在光照不足或者光照剧烈变化的时候视觉画面可能会出现短暂的丢失,并且在雨污状况下功能会受 到严重的限制,行业内通常通过计算机视觉的方式克服摄像头的各种缺点。车载摄像头是高增量市场。车载摄像头的使用量随着自动驾驶功能的不断升级而 增加,比如前视普遍需要1-3个摄像头、环视需要4-8个摄像头。预计到2025年 全球车载摄像头市场将达1762. 6亿元,其中中国市场237. 2亿元。车载摄像头行业产业链包括上游的镜头组供应商、胶合材料供应商、图像传感器 供应商、ISP芯片供应商,以及中游的模组供应商、系统集成商,下游的消费电 子企业、自动驾驶Tierl等。从价值量来看图像传感器(CMOSImageSensor)占了 总成本的50%,其次为占比25%的模组封装和占比14%的光学镜头。上游光学部件:分为光学镜片、滤光片、保护膜、晶圆等。行业玩家有大立光学、 舜宇光学科技、联创电子等,参与者众多,竞争激烈。中游分为镜头组,胶合材料、DSP芯片、CMOS图像传感器等。其中CMOS为可大规 模批量生产的半导体产业,具有显著的规模效应。前期投入巨大,研发困难,但 产品售价不高,导致行业准入壁垒高。CIS芯片行业需要较长的认证周期,因此 新进入玩家难以对现有格局造成影响,会继续强者恒强的竞争格局。车载CIS芯 片行业集中度高,CR2为74%,主要被国际巨头垄断,安森美为全球最大供应商, 市占率为45%;韦尔股份通过收购豪威(美国)成为全球第二,市占率29%; 索 尼市占率6%为第三。今年芯片行业缺货严重,安森美CIS芯片供货不足导致部分 份额被其他CIS企业蚕食,应当继续关注供需变化。CMOS传感器企业有四种供应模式,分别是包含制造的IDM模式、部分外包的 Fablite模式、完全外包的Fabless和晶圆代工Foundiy模式。IDM企业由于设计 与生产的垂直一体化,可以更快地优化迭代新技术,缺点是构建护城河成本高。 Fablite模式可以结合IDM模式的优势和Fabless模式的优势,是我们认为前景 更广的合作模式。中游模组封装:模组封装市场原来由传统车载Tierl博世、法雷奥垄断,但近年 来消费电子领域的摄像头厂商(舜宇光学科技、联创电子等)也加入了竞争。但 新进入企业业绩容易受到消费电子景气度的影响。中游封装市场的先发优势明显,零部件车规认证周期长,一旦通过车轨认证,即 可绑定下游核心大客户,伴随客户一同成长。全球范围来看,LG当前是特斯拉核 心摄像头供应商,与特斯拉签订一万亿韩元(53. 47亿人民币)的订单。国内方 面,仅联创电子和舜宇光学科技实现大规模车载摄像头出货。联创电子是国产版 特斯拉的供应商,蔚来ET7的供应商,也是截止2021年12月唯一一家获得英 伟达认证的摄像头企业;舜宇光学科技是宝马、Mobileye.奔驰、奥迪、特斯拉 等车企的供应商。我们的判断是:车载摄像头企业目前消费电子业务营收占比较高,应当留意消费电子行业景气度 对摄像头企业业绩的影响。核心客户的认证是摄像头企业增长来源。CIS芯片行业规模效应明显,龙头市占率占比高。激光雷达:技术路线未定型,中国企业胜出概率大。激光雷达(Lidar)的作用:主要用于探测周边物体的距离和速度。在激光雷达的 发射端,由激光半导体产生一种高能量的激光束,激光与周围的目标发生碰撞后, 再被反射回来,由激光雷达接收端捕获并进行运算,得到目标的距离和速度。激 光雷达具有比毫米波和摄像头更高的探测精度,可探测的探测距离远,往往可以 达到200米以上。激光雷达按其扫描原理分为机械式、转镜式、MEMS和固态激光 雷达。根据测距原理可以分为飞行时间测距(ToF)和调频连续波(FMCW) o当前行业处于激光雷达应用的摸索阶段,还没有一个清晰的方向,无法明确哪条 技术路线会成为未来主流。激光雷达市场广阔,中国企业将领先美国。激光雷达市场前景广阔,我们预测到 2025年,中国激光雷达市场将接近150亿元,全球市场接近300亿元;至2030 年中国激光雷达市场将接近350亿元,全球市场接近650亿元,全球市场年化增 长率达到48.3%。美国最大自动驾驶公司特斯拉采用纯视觉方案,其他车企暂无 激光雷达上车的具体计划,因此中国成为车载激光雷达的最大潜在市场。2022年 有大量国内整车厂推出搭载激光雷达的产品,预计2022年车载激光雷达产品出货 量将达到20万台。中国企业更具胜出概率是因为中国企业更加贴近市场,与中国 整车厂配合度高,更容易获得市场订单,因此降本速度也会更快,形成良性循环。 中国广阔的市场将会协助中国激光雷达企业弥补与国外企业的技术差距。激光雷达上游为零部件制造,按照功能可以分为发射系统、接收系统、扫描模块 和控制及处理模块。激光雷达中游为激光雷达设计、制造企业。当前美股上市了 7家激光雷达企业, 代表不同的技术路线。Luminar的技术路线代表1550nm光纤激光器混合固态激光 雷达;以色利Innoviz的技术路线代表了硅基MEMS振镜的混合固态激光雷 达;Aeva的技术路线是用FMCW技术研制激光雷达;Velodyne技术路线是旋转 机械式的激光雷达;Ouster是VCSEL+SPAD技术的Flash激光雷达;Cepton是采 用了动圈电机加二维扫描的技术方式做激光雷达;Aeye提供了摄像头与激光雷达 融合产品iDAR。中国激光雷达企业进展也很快,其中Livox、速腾聚创、图达通、 禾赛科技都已经实现了量产出货。这7家企业上市以后股价均有较大跌幅,原因是因为1)特斯拉纯视觉路线进展 太快,市场质疑激光雷达的必要性。2)美国激光雷达量产进度不及预期。当前阶段各个技术路线各有优缺点,我们的判断是未来FMCW技术将与TOF技术并 存、1550nm的激光发射器会优于905nni,同时市场可能会跳过半固态直接跨越到 全固态阶段。FMCW技术与TOF技术并存:TOF技术较为成熟,具有响应速度快、探测精度高的 优点,但无法直接测量速度;FMCW可以直接通过多普勒原理测量速度并且灵敏度 高(高出ToFlO倍以上),抗干扰能力强,可长距离探测,功耗低。未来可能高 端产品用FMCW,低端产品用TOF。1550nm优于905nm: 905nm属于近红外激光,容易被人体视网膜吸收并造成视网 膜损伤,因此905nm方案只能维持在低功率下。1550nm的激光,原理可见光谱, 同等功率条件下的激光对人眼的损伤更小,探测距离更远,但缺点是需要InGaAs 做发生器,且不能使用硅基探测器。跳过半固态直接跨越到全固态:现有的半固态方案转镜式、棱角式、MEMS,都存 在少量机械部件,车载环境下使用寿命短,难以通过车规认证。固态激光雷达的 VCSEL+SPAD方案采用芯片级工艺,结构简单,易过车规,成为目前纯固态激光雷 达最主流的技术方案。iPhonel2pro背后的激光雷达用的就是VCSEL+SPAD方案。我们的判断是:密切关注自动驾驶路线之争,传感器的百花齐放是建立在暂时还没有一个可以统 治自动驾驶具体方案的前提下,纯视觉路线进展过快会对激光雷达企业造成不利 影响。国内激光雷达企业更贴近市场。关注国内激光雷达的主要推动者,华为、蔚来、理想、小鹏的自动驾驶功能进展。看好VCSEL+SPAD路线1550nm激光器路线的企业:Luminar (激光雷达主机)、Lumentum (1550nm 激光器)。高精地图:存在被颠覆可能,甲级测绘资质构筑护城河高精地图存在被颠覆的可能。路线之争在高级地图领域持续,特斯拉提出了不需 要提前测绘的高精地图的方案,用摄像头采集到数据为基础,利用人工智能技术 构建环境的三维空间,采用众包的思维,由每一辆车提供道路信息,并在云端统 一汇总。因此我们需要警惕技术革新对高精地图的颠覆。部分从业者认为高精度地图对于智能驾驶不可或缺,从视野范围看,高精度地图 不受遮挡,不存在距离和视觉的缺陷,在特殊天气条件下,高精度地图依旧可以 发挥作用;从误差看,高精度地图可以有效消除部分传感器误差,在部分路况条 件下,可以有效对现有传感器系统进行补充修正。此外,高精度地图还可以构建 驾驶经验数据库,通过多维时空数据的挖掘,分析危险区域,为驾驶者提供新的 驾驶经验数据集。导航电子地图制作资质是企业护城河。在感知环节,自动驾驶汽车会通过摄像头、 雷达、激光雷达等传感器对周边自然环境及地表人工设施等相关数据进行采集与 处理,以帮助汽车完成环境感知。相关地理数据采集行为被定义为“测绘行为”。 从事测绘工作的单位应当依法取得资质证书,包括“导航电子地图制作”与“互 联网地图服务”的资质。关于导航电子地图制作,根据外商投资准入特别管理 措施(负面清单)(2020年版)以及外国的组织或者个人来华测绘管理暂行 办法(2019年修正)的相关规定,导航电子地图制作属于禁止外商投资的项目。在实际业务开展过程中,有外资背景的自动驾驶企业往往会与有相应资质的测绘 企业进行合作从而解决牌照问题。但随着全社会对于数据安全的追求,对在国内 开展测绘工作的企业要求将会越来越高。导航电子地图的资质审批较为严格,截 至2022年3月25日,中国仅发放了 30余张导航电子地图制作牌照。激光雷达+视觉技术,采集车+众包模式是未来高精地图的主流方案。高精地图需要平衡精度和速度两个衡量指标。过低的采集精度和过低的更新频率 无法满足自动驾驶对高精地图的需求。为解决这一问题高精地图企业采用了一些 新方法来应对,比如众包的模式,每一台自动驾驶汽车都作为高精地图的采集设备提供高精动态信息,汇总后分发给其他汽车使用。在这一模式下,领先的头部 高精地图企业由于可参与众包的车型数量多,因此可以采集更加精确、快速的高 精地图,维持强者恒强的局面。我们的判断是:关注自动驾驶技术的进展,特斯拉的纯视觉方案不需要高级地图,可能会对行业 造成根本性影响。6. 2计算平台:对芯片的要求不断提高,半导体技术是护城河计算平台也叫做自动驾驶域控制器。随着L3以上自动驾驶渗透率的提升,对算力 的要求也提升,虽然当前L3的法规和算法都暂未出台,但整车企业均采用算力冗 余方案,为后续的软件迭代预留空间。计算平台未来有两个发展特点:异构和分布弹性。异构:面向高阶自动驾驶车辆,计算平台需兼容多种类型,多数据传感器并具备 高安全性和高性能。现有单一芯片无法满足诸多接口和算力要求,需采用异构芯 片的硬件方案。异构可以体现在单板卡集成多种架构芯片,如奥迪zFAS集成MCU(微控制器)、FPGA (可编程门阵列)、CPU (中央处理器)等;也可以体现在功 能强大的单芯片(SoC,系统级芯片)同时集成多个架构单元,如英伟达Xavier 集成GPU (图形处理器)和CPU两个异构单元。分布弹性:当前汽车电子架构由众多单功能芯片逐渐集成于域控制器。高阶自动 驾驶要求车载智能计算平台具备系统冗余、平滑拓展等特点。一方面考虑到异构 架构和系统冗余利用多板卡实现系统的解耦和备份;另一方面采用多板卡分布扩 展的方式满足高阶自动驾驶对于算力和接口的要求。整体系统在同一自动驾驶操 作系统的统一管理适配下,协同实现自动驾驶功能,通过变更硬件驱动、通讯服 务等进行不同芯片的适配。随着自动驾驶等级提升,系统对于算力、接口等需求 都会与日俱增。除了增加单个芯片的运算能力,还可以将硬件部件进行重复堆叠,具体来看:L0驾驶自动化一应急辅助(EmergencyAssistance):该级别的辅助驾驶系统, 可以感知环境、并提供信息或者短暂介入车辆运动控制,但是不能持续执行车辆 控制。L1驾驶自动化一部分驾驶辅助(Partialdriverassistance):该级别的辅助驾驶系 统可以持续提供横向或纵向运动控制。但驾驶员仍要对道路状况和车辆驾驶情况 保持监管。L2驾驶自动化一组合驾驶辅助(CombinedDriverAssistance):该级别的辅助驾 驶系统可以持续提供横向和纵向运动控制。在该级别驾驶系统运行过程中,驾驶 员和自动驾驶系统沟通执行全部驾驶任务,允许用户短暂地将双手脱离方向盘, 也叫 HandsoffoL3驾驶自动化一有条件自动驾驶(ConditionaHyautoniateddriving):该系统 在设计条件下持续执行全部驾驶任务。在正常运行过程中,车辆控制、目标探测 与事件响应由自动驾驶系统负责;若出现即将不满足运行范围时请求驾驶员接管。 在运行过程中,允许用户短暂地将视线移到驾驶之外,也叫Eyesoff。L4驾驶自动化一高度自动驾驶(HighlyAutomatedDriving):该系统可以持续地 执行全部动态驾驶任务并自动执行最小风险策略。当系统脱离运行范围时向驾驶 员发出介入请求,驾驶员可不响应请求。驾驶过程中用户注意力可以完全不在驾 驶中,被称为Mindoff。L5驾驶自动化一完全自动驾驶(FullyAutomatedDriving):该系统可在任何可 行驶条件下持续地执行全部动态驾驶任务并执行最小化风险策略。低阶辅助驾驶和高阶自动驾驶的本质区别是出现事故之后的责任划分。根据SAE 的定义我们可以发现出现事故以后L2责任在于乘客,L3责任在于车辆。由于目 前国内自动驾驶的立法尚未健全,整车厂对于自动驾驶的宣传只能停留在L2.5或实现对硬件部件的灵活调整和平滑的扩充,从而实现对整个系统的计算能力的提 升,增加接口、完善功能。异构分布硬件架构主要由三部分组成:AI单元、计算单元和控制单元。AI单元:采用并行计算架构AI芯片,并使用多核CPU配置AI芯片和必要处理器。 目前AI芯片主要用于多传感器数据高效融合与处理,输出用于执行层执行的关键 信息。AI单元是异构架构中算力需求最大的一部分,需要突破成本功耗和性能的 瓶颈以达到产业化要求。AI芯片可选用GPU、FPGA、ASIC (专用集成电路)等。计算单元:计算单元由多个CPU组成。具有单核主频高,计算能力强等特点,满 足相应功能安全要求。装载Hypervisor,Linux的内核管理系统,管理软件资源, 完成任务调度,用于执行自动驾驶相关大部分核心算法,并将多元数据整合起来, 实现路径规划与决策的控制。控制单元:主要基于传统车辆控制器(MCU) o控制单元加载ClassicAUTOSAR平 台基础软件,MCU通过通信接口与ECU相连,实现车辆动力学横纵向控制,并满 足功能安全ASIL-D等级要求。特斯拉FSD芯片为例,FSD芯片采用CPU+GPU+ASIC架构。包含3个四核Cortex-A72 集群,总共 12 个 CPU,运行频率为 2. 2GHz; 一个 MaliG71Mpi2GPU 运 行频率为1GHz、2个神经处理单元(NPU)以及各种其他硬件加速器。三类传感器 之间分工明确,Cortex-A72内核CPU用于通用计算处理、Mali内核GPU用于轻量 级后处理,NPU用于神经网络计算。GPU算力达到600GFL0PS, NPU算力达到73. 73Tops0自动驾驶域控制器的技术核心是芯片,其次是软件和操作系统,短期护城河是客 户与交付能力。芯片决定了自动驾驶计算平台的算力,设计制造难度大,容易成为卡脖子环节。 高端市场均由国际半导体巨头英伟达、Mobileye,德州仪器、恩智浦等把持;在L2及以下的市场以地平线为代表的国内企业也逐渐获得客户的认可。中国的域控 制器厂商一般都会与一家芯片厂家深度合作,采购芯片,配合自身硬件制造、软 件集成能力交付给整车厂。与芯片企业的合作一般具有排他性质。从芯片合作角 度来看,德赛西威绑定英伟达、中科创达绑定高通,优势最明显。国内其他自动 驾驶域控制器企业华阳集团绑定华为海思、东软睿驰与恩智浦和地平线建立合作 关系。域控制器的竞争力由上游合作的芯片企业决定,下游整车厂采购的往往是芯片企 业提供的一整套解决方案。比如蔚来、理想、小鹏的高端车型采购的就是英伟 达Orin芯片以及英伟达自动驾驶软件;极氟和宝马采购的是芯片企业Mobileye 的解决方案;长安、长城采购的是地平线的L2解决方案。我们的判断是:持续跟踪L3以上自动驾驶渗透率,渗透率提升是芯片赛道的核心逻辑。关注芯片层面国产替代的机会:地平线(自动驾驶芯片)、复旦微电(FPGA) o6. 3数据与算法:数据有助于迭代算法,算法质量是自动驾驶企业的核心竞争力用户数据对于改造自动驾驶系统极其重要。自动驾驶的过程中有一类发生概率不 高的罕见场景,这类场景被叫做cornercase。若感知系统遇到了 cornercase则 会带来严重的安全隐患。例如前几年发生的特斯拉的Autopilot没有识别出正在 横穿的白色大卡车,直接从侧面撞上去,导致车主死亡;2022年4月小鹏在开启 自动驾驶的过程中撞上了侧翻在路中间的车辆。此类问题的解决办法只有一个,便是由车企牵头收集真实数据,同时在自动驾驶 计算平台上模拟出更多相似的环境,让系统学习以便下次更好地处理。一个典型 的例子便是特斯拉的影子模式:通过与人类驾驶员行为进行比对,找出潜在的 cornercaseso而后对这些场景进行标注,并加入至训练集中。相应的,车企需要建立数据处理流程,以便搜集上来的真实数据可以用于模型迭 代,同时迭代后的模型可以实装到真实量产车上。同时为了大规模地让机器学习 cornercase,在获取一个cornercase后还会针对这一 cornercase遇到的问题进 行大规模模拟,推导出更多的cornercases系统学习。英伟达应用元宇宙技术开 发的模拟平台一NvidiaDriveSim就是模拟系统之一。数据领先的企业会构建数据 护城河。1)判断自动驾驶车辆是否遇到cornercase,并上传2)针对上传的数据进行标注3)使用模拟软件模拟并创建额外的训练数据4)用数据迭代更新神经网络模型5)通过OTA的方式将模型部署至真实车辆数据闭环的背后依赖超大算力的数据中心,根据英伟达在2022CES上的发言,投 资L2辅助驾驶系统的公司只需1-2000个GPU,而开发完整的L4自动驾驶系统公 司需要25000个GPU来搭建数据中心。1.目前特斯拉拥有3大计算中心总计11544个GPU:自动标记计算中心有1752个 A100GPU,其他两个用来训练的计算中心分别有4032个、5760个A100GPU;在 2021AIDAY发布的自研DOJO超级计算机系统有3000个D1芯片,算力高达lEFLOPSo2.商汤科技在建的上海超算中心项目规划了 20000+A100GPU,全部建成后算力峰 值将达到 3. 65EFLPOS (BF16/CFP8) o我们的判断是:算法人才是自动驾驶企业的重要资源,应当实时观察自动驾驶企业核心技术人员 的流动情况。数据不是万能的,但没有数据是万万不能的。数据领先的企业更容易形成优势 自动驾驶会有大量云计算需求。自动驾驶企业需要搭建训练中心。者L2+。2021年日本政府率先完善法规,为全球第一款法律意义上的L3级别自动 驾驶汽车本田LegendHybridEX的诞生铺平道路。1. 2展望未来:不同级别的自动驾驶将长期共存,L5未来仍有很长的路要走未来L3以下的车辆和L3及以上的车辆可能会长期共存。从技术上来看L3的实现 需要依赖大算力芯片、硬件层面的冗余系统、海量用户数据。这些都为自动驾驶 系统增添了相当大的成本。在合作方面来看车企采用两种研发思路对待这两种自 动驾驶技术。对于低阶辅助驾驶系统,车企产采用传统研发思路与国际Tierl合 作,追求成本和安全。对于高阶自动驾驶系统,车企普遍采用自研的方案。硬件 层面采用高算力芯片和冗余的传感器配置;软件层面成立软件开发团队,自研核 心的感知与决策软件,追求车企之间的差异化。自动驾驶等级上升的过程是可靠性持续上升,直到量变引发质变的过程。L5级别 的自动驾驶系统规定无设计运行范围限制,车内人员也无需执行动态驾驶任务或 接管,这也注定了 L5级别的自动驾驶将面临较大挑战。(报告来源:未来智库)3、自动驾驶承载了我们对于劳动力解放的美好愿望驾驶是一件危险的事。中国2020年有6. 2万人死于交通事故,平均每8分钟就有 1人死于车祸。根据密歇根大学交通研究所的最新报告显示,2014年交通事故死 亡率最高的地区为非洲与拉丁美洲I,其中纳米比亚交通事故死亡率居全球之首, 每10万人中有45人死亡。著名旅游目的地泰国,排在第二,交通死亡率为中国 的两倍。从交通事故死亡占总死亡人数比例来看,许多中东国家领先。阿联酋以15.9%, 位居首位。而中国的数值为3%,高于全球平均水平的2.1%,美国的数据为L8%。驾驶是一件浪费时间的事。消费者每年都会消费大量的时间在路上,2017年美国 人均驾驶时长超过700亿个小时,平均每个美国人每天驾驶时长超过52分钟。与这个数据相对的是一辆车每天只有不到5%的时间是被使用的,其他95%的时间都 停在停车位上。这样的背景下自动驾驶需求应运而生。2. 1人类对自动驾驶的追求未停息自动驾驶发展里程碑:1970年代开始,人们就开始尝试对自动驾驶的研究。在2010年以后,随着人工 智能、计算机科学和电动汽车的发展,自动驾驶开始进入黄金期。1920s-1970s汽车自动化的实验自1920年代即已开始,但要到1950年代才出 现可行的实验,并取得部分成果。第一辆半自动汽车于1977年由日本筑波机械工程实验室开发,车辆行驶在特别标 记的街道上,通过车身两个摄像头和一台模拟计算机来解读标记。在高架轨道的 支持下,车辆达到了每小时30公里(19英里/小时)的速度。1980s - 2000s具有里程碑意义的自动驾驶汽车出现在1980年代。1985年,卡内基梅隆大学的ALV项目已经在两车道道路上展示了每小时31公里 (19英里/小时)的自动驾驶速度,并在1986年增加了避障功能,并在1987年实现在白天和夜间条件下的越野驾驶。1995年,卡内基梅隆大学的NavLab项目完成了美国第一个自主的“海岸线到海 岸线驾驶”。在宾夕法尼亚州匹兹堡和加利福尼亚州圣地亚哥之间的2,849英里(4,585公里)中,2,797英里(4,501公里)通过自动驾驶实现,平均时速为63. 8英里/小时(102. 7公里/小时)o【2000-现在】自动驾驶辅助系统逐渐推广至量产车上。2004年Mobileye推出其首款量产Soc产品EyeQl,以支持前向碰撞警告(FCW)、 车道偏离警告(LDW)和智能远光灯控制(IHC)等功能。2004年3月举行首届DARPAGrandChallenge挑战赛,参赛车队使用摄像头、激光 雷达等传感器以及计算设备,实现了车辆的自动驾驶,这是激光雷达的第一次亮 相。2013年,美国有4个州(内华达州、佛州、加州与密歇根州)通过了允许自动驾 驶汽车的法规。2015年,这四州与华盛顿哥伦比亚特区都允许自动驾驶汽车于开 放道路上进行测试。2018年10月,Waymo宣布其测试车辆已在自动模式下行驶超过10,000,000英里 (16,000,000 公里),每月增加约 1,000,000 英里 (1,600,000 公里)。2018年12月,Waymo率先在美国亚利桑那州凤凰城将全自动出租车服务商业化。2020 年10月,Waymo在凤凰城推出了地理围栏无人驾驶叫车服务。2021年3月,本田推出限量版LegendHybridEX轿车,配备新批准的3级自动驾 驶设备,其中的“TrafficJamPilot”系统是日本批准的首个L3自动驾驶系统, 也是世界上第一个可以在公路上行驶的L3自动驾驶系统。3.2两大因素驱动自动驾驶持续增长低阶辅助驾驶的驱动力是法规。除了消费者自发选购L2驾驶辅助车型的需求以外, 促进车企开发低级别自动驾驶辅助的驱动力是法规。为保证司机与乘客的安全, 欧洲在2017年推出了一般安全规定(GeneralSafetyRegulation)其中明确 要求未来在欧洲销售的新车需要配备限速辅助(ISA)、紧急制动辅助(AEB)等 基础辅助驾驶功能。我国营运货车安全技术条件强制要求相关车辆于2020年 9月起具备车道偏离报警功能和车辆前向碰撞预警功能,于2021年5月1日起安 装自动紧急制动系统。高阶自动驾驶的驱动力是生产力。消费者每年都会消费大量的时间在路上,2017 年,美国人均驾驶时长超过700亿个小时,平均每个美国人每天驾驶时长超过52 分钟。与这个数据相对的是一辆车每天只有不到5%的时间是被使用的,其他95%的时间都停在停车位上。如何有效利用空闲时间就成为了高阶自动驾驶的核心驱 动力。预计到2025年,我国乘用车自动驾驶系统装配量将达到1,630. 5万辆,装配率将 达到65. 0%o前视:2020年,中国乘用车新车前视装配量达到496. 8万辆,同比增长62. 1%,装配率为26. 4%,同比上升10.9个百分点。随着前视系统算力提高、功能的增加, 以及相对的成本优势,预计2025年前视系统装配量将突破1600万辆,装配率提 升到65%O当前,前视单目是国内乘用车主流方案,同时部分企业也在探索双目等前视摄像 头的应用。2021年华为、大疆相继推出自研双目摄像头产品及解决方案。其中, 华为的双目摄像头已在极狐阿尔法S上应用。大疆车载也计划2021年将采用双目 摄像头的自动驾驶方案应用在国产车型上。环视:2020年,中国环视系统装配量为339.8万辆,较2019年上升44%; 装配 率为18%,同比增加6个百分点。随着环视系统对倒车后视的替代以及泊车功能 的加持,其装配量将会进一步提升。伴随环视系统对倒车后视的替代以及360。全景环视+超声波成为融合泊车主流方案,使得360度全景环视进入一个新的发展 周期,预计2025年装配率将攀升至50吼视觉DMS:根据佐思汽研统计,2020年中国已有10多款乘用车上市新车装配DMS 功能,如长安汽车、蔚来、小鹏汽车、WEY、星途、哪吒汽车、零跑、吉利汽车、 威马汽车、广汽埃安等。2020年DMS系统装配量达到17. 3万辆,装配率为0.9%; 预计到2025年其装配率有望达到20%左右,实现飞跃式增长。2021年4月工信部发布智能网联汽车生产企业及产品准入管理指南(试行), 要求智能网联车辆需具备人机交互和驾驶员参与行为的监测功能,释放DMS上车 强信号。行车记录仪

    注意事项

    本文(汽车自动驾驶专题报告.docx)为本站会员(太**)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开