毕业论文_基于小波变换的数字水印算法研究.doc
SelectionParagraphFormatLineSpacingLinesToPointsSelectionParagraphFormatLineSpacingLinesToPointselectionParagraaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaphFormatLineSpacingLinesToPointsSelectionParagraphFormatLineSpacingLinesTSelectionParbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbagraphFoLineSpacingLinesToPointsSelectionParagraphFormatLineSpacingLinesToPointse11111111111111111111111111111111lectionParagraphFormatLineSpacingLinesToPointsSelectionParagraphFormatLineSpacingLinesToPoctionParagraphFormatLineSpaci2222222222222222222222ngLinesToPoints2SelectionParagraphFormatLineSpacingLinesToPointsSelectionParagraphFormatLineSpacingLinesToPointselectionParagraphFccccccccccccccccccccccccccccccccccccccccccccccccccccccccormatLineSpacingLinesToPointsSelectionParagraphFormatLineSpacingLinesToPoctionParagraSelecSelectionParagraphFormatLineSpacingLinesToPointsSelectionParagraphFormatLineSpacingLinesToPointselectionParagraaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaphFormatLineSpacingLinesToPointsSelectionParagraphFormatLineSpacingLinesTSelectionParbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbagraphFoLineSpacingLinesToPointsSelectionParagraphFormatLineSpacingLinesToPointse11111111111111111111111111111111lectionParagraphFormatLineSpacingLinesToPointsSelectionParagraphFormatLineSpacingLinesToPoctionParagraphFormatLineSpaci2222222222222222222222ngLinesToPoints2SelectionParagraphFormatLineSpacingLinesToPointsSelectionParagraphFormatLineSpacingLinesToPointselectionParagraphFccccccccccccccccccccccccccccccccccccccccccccccccccccccccormatLineSpacingLinesToPointsSelectionParagraphFormatLineSpacingLinesToPoctionParagraSelec目 录摘 要Abstract第1章 绪论11.1引言11.2本文研究的目的及意义21.3数字水印技术的国内外研究现状2第2章 数字水印理论基础52.1 数字水印的基本概念52.2 数字水印的基本特征52.3 数字水印的基本原理52.4 数字水印的分类82.5 数字水印典型算法(针对图像领域)102.6 数字水印的鲁棒性问题和攻击行为122.7 数字水印应用领域13第3章 小波分析理论基础173.1小波分析的发展历程173.2小波函数与小波变换183.3离散小波变换203.4 多分辨率分析223.5实验环境:可实现数字水印技术的高效实用工具Matlab24第4章 基于小波变换的数字水印算法254.1算法描述254.2实验结果及分析284.3 本章小结36参考文献37致 谢39附 录41基于小波变换的数字水印算法研究摘 要数字水印技术是目前信息安全技术领域的一个新方向,是一个在开放的网络环境下,保护版权和认证来源及完整性的新型技术。本文针对基于小波变换的数字水印技术,提出了一种基于小波域的二值图像水印算法。该算法选择了检测结果直观、有特殊意义的二值图像作为原始水印,并在嵌入之前进行图像置乱预处理,以提高安全性和隐蔽性,兼顾了水印的不可见性和鲁棒性,利用多分辨率分析思想进行水印的嵌入与提取。通过大量的仿真实验,证明本文算法在保证水印不可见性的同时,对常见的图像处理如JPEG压缩、噪声、滤波、剪切等,均有较好的鲁棒性。关键词:数字水印,小波变换,鲁棒性,不可见性,JPEG压缩Based on the wavelet transform the digital watermarkAbstract Digital watermarking technology is the field of information security technology a new direction, is an open network environment, copyright protection and authentication and integrity of the sources of new technology.In this paper, based on wavelet transform the digital watermarking technology, a wavelet domain based on the binary image watermarking algorithm. The algorithm chosen the test results intuitive, with special significance in the value of the original image as a watermark and embedded in the image scrambling prior to the pretreatment to enhance the safety and concealment; watermark does not take into account the visibility and robustness, Use of multi-resolution analysis of the thinking embedded watermark and extraction. Through the simulation experiments to prove that this algorithm can not watermark visibility at the same time, the common image processing such as JPEG compression, noise, and so on, have a better robustness.Key words: digital watermarking, wavelet transform , Robust, visibility, JPEG compression- 43 -SelectionParagraphFormatLineSpacingLinesToPointsSelectionParagraphFormatLineSpacingLinesToPointselectionParagraaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaphFormatLineSpacingLinesToPointsSelectionParagraphFormatLineSpacingLinesTSelectionParbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbagraphFoLineSpacingLinesToPointsSelectionParagraphFormatLineSpacingLinesToPointse11111111111111111111111111111111lectionParagraphFormatLineSpacingLinesToPointsSelectionParagraphFormatLineSpacingLinesToPoctionParagraphFormatLineSpaci2222222222222222222222ngLinesToPoints2SelectionParagraphFormatLineSpacingLinesToPointsSelectionParagraphFormatLineSpacingLinesToPointselectionParagraphFccccccccccccccccccccccccccccccccccccccccccccccccccccccccormatLineSpacingLinesToPointsSelectionParagraphFormatLineSpacingLinesToPoctionParagraSelecSelectionParagraphFormatLineSpacingLinesToPointsSelectionParagraphFormatLineSpacingLinesToPointselectionParagraaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaphFormatLineSpacingLinesToPointsSelectionParagraphFormatLineSpacingLinesTSelectionParbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbagraphFoLineSpacingLinesToPointsSelectionParagraphFormatLineSpacingLinesToPointse11111111111111111111111111111111lectionParagraphFormatLineSpacingLinesToPointsSelectionParagraphFormatLineSpacingLinesToPoctionParagraphFormatLineSpaci2222222222222222222222ngLinesToPoints2SelectionParagraphFormatLineSpacingLinesToPointsSelectionParagraphFormatLineSpacingLinesToPointselectionParagraphFccccccccccccccccccccccccccccccccccccccccccccccccccccccccormatLineSpacingLinesToPointsSelectionParagraphFormatLineSpacingLinesToPoctionParagraSelec第1章 绪论1.1引言随着信息技术和计算机网络的飞速发展,数字多媒体信息包括图像、文本音视频、三维模型的存储、复制与传播变得非常方便。我们在通过互联网方便快捷的获取多媒体信息的同时,还可得到与原始数据完全相同的复制品,这就带来了对数字媒体原创者的版权和经济利益如何保护以及数字媒体信息是否安全可信等诸多问题。由此引发的信息安全问题、盗版问题和版权纷争问题已成为日益严重的社会问题。因此,对多媒体内容的版权保护与内容鉴别成为我们所处的这个信息时代所急待解决的问题。密码技术是信息安全技术领域的主要传统技术之一,一般采用将明文加密成密文的秘密密钥系统或公开密钥系统,其保护方式都是控制文件的存取,即将文件加密成密文,使非法用户不能解读。但是传统的加密方法对多媒体内容的保护和完整性认证具有一定的局限性。首先,随着计算机处理能力的快速提高,这种通过不断增加密钥长度来提高系统密级的方法变得越来越不安全;其次,加密方法只用在通信信道中,一旦被解密,信息就完全变成明文;另外,密码学中的完整性认证是通过数字签名方式实现的,它并不是直接嵌入到多媒体信息当中,因此无法察觉信息在经过加密系统之后的再次传播与内容的改变。针对上述传统安全技术的缺陷,许多研究人员开始尝试用各种信号处理方法对多媒体数据进行隐藏加密,并将该技术用于制作多媒体的数字水印。数字水印技术正好弥补了加密技术和数字签名技术的不足,将具有确定性和保密性的信息直接嵌入到原始数据并作为原始数据的一部分而保留在其中,因而即使在解密之后仍可以跟踪数据的复制和传输,对多媒体数据进行有效的保护1。数字水印技术是近几年来国际学术界兴起的一个前沿研究领域,是信息隐藏技术研究领域的重要分支,如今已成为多媒体信息安全研究领域的一个热点。它将具有特定意义的、与载体内容相关或不相关的标记(水印),利用数字嵌入的方法,隐藏在载体,即数字图像、声音、文档、图书、视频等数字产品中,用以证明创作者对其作品的所有权,并作为鉴定、起诉非法侵权的证据。同时通过对水印的检测和分析来保证数字信息的完整性和可靠性,从而成为知识产权保护和数字多媒体防伪的有效手段。数字水印的研究涉及信息论、编码理论、通信原理、信号处理、信息安全等多学科多门类。近年来数字水印技术在数字信息的版权保护与完整性认证方面得到了迅猛发展,具有良好的应用前景。1.2本文研究的目的及意义数字水印技术作为一个跨多领域、多学科(数字信号处理、图像处理、模式识别、数字通信、多媒体技术、密码学、语音处理等)的技术体系,由于它与具体的应用密切相关,因此每个研究人员介入的角度、采用的研究方法和设计策略也各不相同,但都是围绕着实现数字水印的各种基本特征进行设计,这也决定了数字水印技术研究成果的多样性以及数字水印技术研究的不完善性,仍有许多技术问题需要解决。同时,水印认证体系的建立、法律保护等问题也是影响数字水印技术迈向实用化的因素。另外,数字水印技术发展到今天,还是没有形成完整的理论体系,因而对相关研究人员来说这是一个挑战性的课题。由于目前国际上的水印技术尚未形成统一的标准,形成一个共同遵循的标准己成为研究水印者的共同目标。然而,标准的算法必须有其优越性、通用性和有效性,并要得到世界各国的认同,所以形成标准是一项艰巨的任务。由于小波变换的优点,使小波变换域研究水印处理技术是目前的热点,并且在该领域形成水印算法标准的可能性最大,因此本论文研究基于小波变换域的数字水印算法设计与仿真实现具有重要意义2。1.3数字水印技术的国内外研究现状随着计算机和网络的飞速发展,数字作品得以有效的存储和发布,同时数字作品又极易被非法拷贝、伪造或篡改,使得很多版权所有者不愿利用网络公开其作品,从而阻碍其自身发展。从技术上看,数字作品版权信息的嵌入和检测问题,是数字作品版权保护的两个关键问题,它综合了传统密码学的认证和鉴别的优点,又加入了稳健性要求。版权保护信息必须与被保护的数据紧密结合,同时版权保护信息的鉴别过程必须具有抗各种干扰的能力,比如噪声、压缩等。数字水印技术作为解决网络上数字作品版权管理问题的核心技术,同时又能隐秘的传递信息,鉴于其广阔的应用前景和经济、社会效益,全球各国政府部门和研究机构纷纷投入到数字水印技术的研究中,推动了数字水印技术的发展 121 。数字水印技术的出现是Schyndel在ICIP'94会议上发表的一篇题为“A digital watermark”的文章开始的。这是第一篇发表于重要会议的关于数,水印技术的文章开始的。随着网络的普及,数字水印技术迅速成为研究热点,很多数字水印算法和实现方案也随之出现。据统计,公开发表的关于数字水印的文章数量在 1992 年、 1993 年、 1994 年和 1995 年分别为 2 篇、 2 篇、 4 篇和 13 篇,1996年第一届信息隐藏国际学术研讨会后,发表的文章数量剧增, 1998 年发表的文章数量达到了 103 篇, 1999 年达 200 多篇, 2000 年和 2001 年分别达 250 多篇另外,许多信息安全、密码学和信号处理领域的国际会议和学术期刊如 IEEE , ACM 等都有关于数字水印技术方面的专题。国外研究机构有诸如美国财政部、美国版权工作组、美国洛斯阿莫思国家实验室、美国海陆空军研究实验室、欧洲电信联盟、德国国家信息技术研究中心、日本 NIT 信息与通信系统研究中心、麻省理工学院的媒体实验室、瑞士日内瓦大学、多伦多大学、普林斯顿大学、剑桥大学、普度大学等,同时 IBM 、日立、 NEC 、 Pioneer 和 Sony 五家公司还宣布联合研究并推广数字水印技术,取得了大量研究成果。此外欧洲、北美以及其他的一些关于图像、多媒体研究方面的国际会议都有专门的数字水印讨论组。 IEEE 也曾推出两个关于数字水印的专集,分别为::1998年5月的“IEEE Journal on Selected Areas of Communication Vol.16” 和1999年7月的“Proceedings of the IEEE Vol.87”IEEE的Signal Processing在2001年6月出版了一卷水印专集,卷名为“Special Section on Information Theoretic Aspects of Digital Watermarking”在实际应用方面,美国的 Digimarc公司于1995 年就推出了拥有专利权的水印制作技术,是当时世界上唯一一家拥有这一技术的公司,其水印技术以插件的形式在 Pbotoshop5.0和 CorelDraw7.0 中得到应用,IBM 的“数字图书馆”3 4 软件也提供了数字水印功能。在 1997 年,一个名为 VIVA 的欧洲工程开始发展广播监测系统。MusiCode系统提供了音频信号的广播监测,VEIL-II 和 MediaTrax 提供了视频信号的广播监测。美国、日本以及荷兰开始研究用于票据防伪的数字水印技术。麻省理工学院媒体实验室受美国财政部委托,研究在彩色打印机、复印机输出的每幅图像中加入唯一的、不可见的数字水印,在需要时可以实时扫描票据,判断水印的有无,快速辨识真伪。各项研究取得了丰硕的成果,但是,目前市场上的数字水印产品在技术上还很不成熟,距离真正的推广使用还有很大的距离。在国外数字水印技术研究快速发展的同时,我国政府和研究机构也加大了重视力度,数字水印技术在我国信息安全领域的地位和作用不断上升,更多的专家学者投入到这一研究领域当中。1999 年 12 月,由北京电子技术应用研究所组织,何德全、周仲义、蔡吉人院士与有关研究单位联合发起召开了我国第一届信息隐藏学术研讨会,此后 2000 年、2001 年、2002 年、2004 年召开了 4 届全国信息隐藏学术研讨会。2000 年 1 月,国家 863 计划智能计算机专家组、中国科学院自动化研究所和北京邮电大学信息安全中心成功地举办了数字水印技术研讨会5。同时,国家,“ 863 计划”、“ 973 项目”、国家自然科学基金等都对数字水印的研究提供专项资金支持。国内从事信息隐藏技术研究的科研院所主要有:北京邮电大学信息安全中心、中国科学院软件研究所、中国科学院自动化研究所、中科院信息安全国家重点实验室、清华大学、浙江大学、西安电子科技大学、北方工业大学、北京理工大学、北京电子技术应用研究所、中山大学、哈尔滨工业大学等单位。从目前的研究发展来看,我国数字水印学术领域的研究正在蓬勃开展,而且形成了自己独特的研究思路,相信随着国内信息化程度的提高、电子政务的推广和电子商务的普及,作为数字作品版权管理核心技术的数字水印技术将会拥有更加广阔的应用前景和发展空间6。第2章 数字水印理论基础2.1 数字水印的基本概念数字水印(Digital Watermark)技术是将与多媒体内容相关或不相关的一些标示信息直接嵌入多媒体内容当中,但不影响原内容的使用价值,并不容易被人的知觉系统觉察或注意到。通过这些隐藏在多媒体内容中的信息,可以确认内容创建者、购买者,或者验证内容是否真实完整。与水印相近或关系密切的概念有很多,从目前出现的文献中看,已经有诸如信息隐藏(Information Hiding )、信息伪装(Steganography )、数字水印(Digital Watermarking )和数字指纹(Fingerprinting )等概念。2.2 数字水印的基本特征(1)安全性:数字水印的信息应是安全的,难以篡改或伪造,同时,应当有较低的误检测率,当原内容发生变化时,数字水印应当发生变化,从而可以检测原始数据的变更;当然数字水印同样对重复添加有有强的抵抗性。(2)隐蔽性:数字水印应是不可知觉的,而且应不影响被保护数据的正常使用,不会降质。(3)鲁棒性:是指在经历多种无意或有意的信号处理过程后,数字水印仍能保持部分完整性并能被准确鉴别。可能的信号处理过程包括信道噪声、滤波、数/模与模/数转换、重采样、剪切、位移、尺度变化以及有损压缩编码等。主要用于版权保护的数字水印属于鲁棒性数字水印(Robust Watermarking),而易损水印(Fragile Watermarking),主要用于完整性保护,这种水印同样是在内容数据中嵌入不可见的信息。当内容发生改变时,这些水印信息会发生相应的改变,从而可以鉴定原始数据是否被篡改。(4)水印容量:嵌入的水印信息必须足以表示多媒体内容的创建者或所有者的标志信息,或购买者的序列号,这样有利于解决版权纠纷,保护数字产权合法拥有者的利益。尤其是隐蔽通信领域的特殊性,对水印的容量需求很大。2.3 数字水印的基本原理水印的基本原理是嵌入某些标志数据到宿主数字中作为水印,使得水印在宿主数据中不可感知和足够安全。为了保证由于水印的嵌入而导致宿主数据失真不被察觉到,必须应用某种感知准则,不管是隐性还是显形。水印算法要结合加密方法以提供其安全性,通过的水印算法包含两个基本方面:水印的嵌入和水印的提取。水印可以由多种模型构成,如随机数字序列、数字标识、文本以及图像等。数字水印的嵌入过程如图所示:水印信号原始信号嵌入过程含水印的信号图2.1 数字水印嵌入过程频域法加入数字水印的原理是首先将原始信号(语音一维信号、图像二维信号)变换到频域,常用的变换一般有DWT、DCT、DFT、WP和分形。然后,对加入了水印信息的信号进行频域反变换(IDWT、IDCT、DFT、WP),得到含有水印信息的信号。数字水印的检测过程如图所示:原始的信号带检测的信号抽取/检测过程抽取的水印 水印信息有/无水印结束结束图2.2数字水印的检测过程频域法检测水印的原理是将原始信号与待检测信号同时进行变换域变换,比较两者的区别,进行嵌入水印的逆运算,得出水印信息。如果是可读的水印,那么就此结束,如果是不可读水印,如高斯噪声,就将得出的水印与已知水印作比较,由相关性判断,待检测信号含不含水印,故水印的检测有两个结束点。下面介绍一种基于小波变换的数字水印方法。 (1)第一步,将水印图象作时域上的变换,目的是对水印信息进行乱序,达到加密的效果。采用函数: = mod N 其中k是一个控制参数,N是矩阵的大小,(x,y)和(x,y)表示像素点在变换前后的位置。假设P表示由二值水印信息组成的一个mn的矩阵,对每一个点的坐标作变换之后,这个m的矩阵将变成一个N的矩阵,矩阵的每个元素为0或1。(2)第二步,对图像作小波变换,对于变换后得到的小波系数,选出一个起始位置在(p1,p2),大小为NN的系数矩阵。这个矩阵的大小与水印图像作时域变换后形成的矩阵大小是一致的。(3)第三步,在选出的系数矩阵中嵌入水印信息,即将两个NN的矩阵进行信息叠加,其中含有水印信息的矩阵元素为0或1。TCY提出了一种信息叠加的方案。 记: A水印信息进行时域变换后得到的大小为NN的矩阵; U在矩阵A中含有水印信息的位置的集合; B图象经过小波变换后得到的系数矩阵(NN); S模; CB和U的交集; =c(i,j)modS;对于所有属于U和A交集的点c(i,j):如果A(i,j)=1,并且B(i,j);则c(i,j)=c(i,j)-+T;如果A(i,j)=0,并且B(i,j);则c(i,j)=c(i,j)-+T;如果A(i,j)=1,并且B(i,j)0;则c(i,j)=c(i,j)+-T;如果A(i,j)=0,并且B(i,j)0;则c(i,j)=c(i,j)+-T;这里T,T是水印嵌入的门限,安全系数包括n,k ,p,p,m,N,S, T, T。水印的提取过程如下:假设y是从小波变换域抽取的一个NN的系数矩阵,起始位置为(p,p);满足:=Y(i,j)modS, D是一个NN的矩阵。对Y中的所有点(i,j),定义如果/2,则D(i,j)=1;如果/2,则D(i,j)=1;因此对矩阵D作T-n次A反变换,水印图像就被恢复出来了7。2.4 数字水印的分类(1)按特性划分按水印的特性可以将数字水印分为鲁棒数字水印和易损数字水印两类。鲁棒数字水印主要用于在数字作品中标识著作权信息,利用这种水印技术在多媒体内容的数据中嵌入创建者、所有者的标示信息,或者嵌入购买者的标示(即序列号)。在发生版权纠纷时,创建者或所有者的信息用于标示数据的版权所有者,而序列号用于追踪违反协议而为盗版提供多媒体数据的用户。用于版权保护的数字水印要求有很强的鲁棒性和安全性,除了要求在一般图象处理(如:滤波、加噪声、替换、压缩等)中生存外,还需能抵抗一些恶意攻击。易损水印(Fragile Watermarking),与鲁棒水印的要求相反,易损数字水印主要用于完整性保护,这种水印同样是在内容数据中嵌入不可见的信息。当内容发生改变时,这些水印信息会发生相应的改变,从而可以鉴定原始数据是否被篡改。易损水印应对一般图象处理(如:滤波、加噪声、替换、压缩等)有较强的免疫能力(鲁棒性),同时又要求有较强的敏感性,即:既允许一定程度的失真,又要能将失真情况探测出来。必须对信号的改动很敏感,人们根据易损水印的状态就可以判断数据是否被篡改过。(2)按水印所附载的媒体划分按水印所附载的媒体,我们可以将数字水印划分为图像水印、音频水印、视频水印、文本水印以及用于三维网格模型的网格水印等。随着数字技术的发展,会有更多种类的数字媒体出现,同时也会产生相应的水印技术。(3)按检测过程划分 按水印的检测过程可以将数字水印划分为明文水印和盲水印。明文水印在检测过程中需要原始数据,而盲水印的检测只需要密钥,不需要原始数据。一般来说,明文水印的鲁棒性比较强,但其应用受到存储成本的限制。目前学术界研究的数字水印大多数是盲水印。(4)按内容划分按数字水印的内容可以将水印划分为有意义水印和无意义水印。有意义水印是指水印本身也是某个数字图像(如商标图像)或数字音频片段的编码;无意义水印则只对应于一个序列号。有意义水印的优势在于,如果由于受到攻击或其他原因致使解码后的水印破损,人们仍然可以通过视觉观察确认是否有水印。但对于无意义水印来说,如果解码后的水印序列有若干码元错误,则只能通过统计决策来确定信号中是否含有水印。(5)按用途划分不同的应用需求造就了不同的水印技术。按水印的用途,我们可以将数字水印划分为票证防伪水印、版权保护水印、篡改提示水印和隐蔽标识水印。票证防伪水印是一类比较特殊的水印,主要用于打印票据和电子票据、各种证件的防伪。一般来说,伪币的制造者不可能对票据图像进行过多的修改,所以,诸如尺度变换等信号编辑操作是不用考虑的。但另一方面,人们必须考虑票据破损、图案模糊等情形,而且考虑到快速检测的要求,用于票证防伪的数字水法不能太复杂。版权标识水印是目前研究最多的一类数字水印。数字作品既是商品又是知识作品,这种双重性决定了版权标识水印主要强调隐蔽性和鲁棒性,而对数据量的要求相对较小。篡改提示水印是一种脆弱水印,其目的是标识原文件信号的完整性和真实性。隐蔽标识水印的目的是将保密数据的重要标注隐藏起来,限制非法用户对保密数据的使用。(6)按水印隐藏的位置划分按数字水印的隐藏位置,我们可以将其划分为时(空)域数字水印、频域数字水印、时/频域数字水印和时间/尺度域数字水印。时(空)域数字水印是直接在信号空间上叠加水印信息,而频域数字水印、时/频域数字水印和时间/尺度域数字水印则分别是在DCT变换域、时/ 频变换域和小波变换域上隐藏水印。随着数字水印技术的发展,各种水印算法层出不穷,水印的隐藏位置也不再局限于上述四种。应该说,只要构成一种信号变换,就有可能在其变换空间上隐藏水印8。2.5 数字水印典型算法(针对图像领域)(1)空域算法该类算法中典型的水印算法是将信息嵌入到随机选择的图像点中最不重要的像素位 (LSB:least significant bits)上,这可保证嵌入的水印是不可见的。但是由于使用了图像不重要的像素位,算法的鲁棒性差,水印信息很容易为滤波、图像量化、几何变形的操作破坏。另外一个常用方法是利用像素的统计特征将信息嵌入像素的亮度值中。(2)Patchwork算法方法是随机选择对像素点(ai,bi),然后将每个ai点的亮度值加1,每个bi点的亮度值减1,这样整个图像的平均亮度保持不变。适当地调整参数,Patchwork方法对JPEG压缩、FIR滤波以及图像裁剪有一定的抵抗力,但该方法嵌入的信息量有限。为了嵌入更多的水印信息,可以将图像分块,然后对每一个图像块进行嵌入操作。(3)变换域算法该类算法中,大部分水印算法采用了扩展频谱通信(spread spectrum communication)技术。算法实现过程为:先计算图像的离散余弦变换 (DCT),然后将水印叠加到DCT域中幅值最大的前系数上(不包括直流分量),通常为图像的低频分量。若DCT系数的前个最大分量表示为D= di ,i=1 , ,水印是服从高斯分布的随机实数序列 = wi ,i=1 , ,那么水印的嵌入算法为di = di(1 + awi),其中常数a为尺度因子,控制水印添加的强度。然后用新的系数做反变换得到水印图像I。解码函数则分别计算原始图像I和水印图像I的离散余弦变换,并提取嵌入的水印W,再做相关检验以确定水印的存在与否。该方法即使当水印图像经过一些通用的几何变形和信号处理操作而产生比较明显的变形后仍然能够提取出一个可信赖的水印拷贝。一个简单改进是不将水印嵌入到DCT域的低频分量上,而是嵌入到中频分量上以调节水印的顽健性与不可见性之间的矛盾。另外,还可以将数字图象的空间域数据通过离散傅里叶变换(DFT)或离散小波变换(DWT)转化为相应的频域系数;其次,根据待隐藏的信息类型,对其进行适当编码或变形;再次,根据隐藏信息量的大小和其相应的安全目标,选择某些类型的频域系数序列(如高频或中频或低频);再次,确定某种规则或算法,用待隐藏的信息的相应数据去修改前面选定的频域系数序列;最后,将数字图象的频域系数经相应的反变换转化为空间域数据。该类算法的隐藏和提取信息操作复杂,隐藏信息量不能很大,但抗攻击能力强,很适合于数字作品版权保护的数字水印技术中。(4)压缩域算法是基于JPEG、MPEG标准的压缩域数字水印系统不仅节省了大量的完全解码和重新编码过程,而且在数字电视广播及VOD(Video on Demand)中有很大的实用价值。相应地,水印检测与提取也可直接在压缩域数据中进行。下面介绍一种针对MPEG-2压缩视频数据流的数字水印方案。虽然MPEG-2数据流语法允许把用户数据加到数据流中,但是这种方案并不适合数字水印技术,因为用户数据可以简单地从数据流中去掉,同时,在MPEG-2编码视频数据流中增加用户数据会加大位率,使之不适于固定带宽的应用,所以关键是如何把水印信号加到数据信号中,即加入到表示视频帧的数据流中。对于输入的MPEG-2数据流而言,它可分为数据头信息、运动向量(用于运动补偿)和DCT编码信号块3部分,在方案中只有MPEG-2数据流最后一部分数据被改变,其原理是,首先对DCT编码数据块中每一输入的Huffman码进行解码和逆量化,以得到当前数据块的一个DCT系数;其次,把相应水印信号块的变换系数与之相加,从而得到水印叠加的DCT系数,再重新进行量化和Huffman编码,最后对新的Huffman码字的位数n1与原来的无水印系数的码字n0进行比较,只在n1不大于n0的时候,才能传输水印码字,否则传输原码字,这就保证了不增加视频数据流位率。该方法有一个问题值得考虑,即水印信号的引入是一种引起降质的误差信号,而基于运动补偿的编码方案会将一个误差扩散和累积起来,为解决此问题,该算法采取了漂移补偿的方案来抵消因水印信号的引入所引起的视觉变形9。(5)NEC算法是由NEC实验室的Cox等人提出,该算法在数字水印算法中占有重要地位,其实现方法是,首先以密钥为种子来产生伪随机序列,该序列具有高斯N(0,1)分布,密钥一般由作者的标识码和图象的哈希值组成,其次对图象做DCT变换,最后用伪随机高斯序列来调制(叠加)该图象除直流(DC)分量外的1000个最大的DCT系数。该算法具有较强的鲁棒性、安全性、透明性等。由于采用特殊的密钥,因此可防止IBM攻击,而且该算法还提出了增强水印鲁棒性和抗攻击算法的重要原则,即水印信号应该嵌入源数据中对人感觉最重要的部分,这种水印信号由独立同分布随机实数序列构成,且该实数序列应该具有高斯分布N(0,1)的特征。(6)生理模型算法是人的生理模型包括人类视HVS(HumanVisualSystem)和人类听觉系统HAS。该模型不仅被多媒体数据压缩系统利用,同样可以供数字水印系统利用。利用视觉模型的基本思想均是利用从视觉模型导出的JND(Just Noticeable Difference)描述来确定在图象的各个部分所能容忍的数字水印信号的最大强度,从而能避免破坏视觉质