建筑构造与识图2.pptx
第二篇 投影作图投影的基本知识投影法介绍投影法介绍 正投影的基本性质正投影的基本性质三视图的形成及投影规律三视图的形成及投影规律点、直线、平面的投影点、直线、平面的投影v影子-有光线,物体和投影面条件下产生,灰黑一片。只能反映底部轮廓,表达不了物体真面目。v投影-假设物体透明,光线可透过,组成物体的各棱线不透明,能在投影面上投落下它们的影子,这样的影子不但能反映物体外形,也能反映物体上部和内部情况。v光源:投影中心v光线:投射线投影方法投影方法中心投影法中心投影法平行投影法平行投影法正投影法正投影法斜投影法斜投影法画透视图画透视图画斜轴测图画斜轴测图 画标高图画标高图及及正轴测图正轴测图单面投影单面投影多面投影多面投影画工程图样画工程图样投影的基本知识投影的基本知识投影法介绍投影法介绍投影面投影面2.1.1中心投影法中心投影法投影面投影面中心投影法得到的投影一般不反映形体的真中心投影法得到的投影一般不反映形体的真实大小。实大小。投影特性投影特性2.1.1中心投影法中心投影法投射中心投射中心投影体投影体ACB投影投影abc投射线投射线CABabc物体位置改变,物体位置改变,投影大小也改变投影大小也改变度量性较差,作图复杂。度量性较差,作图复杂。2.1.2平行投影法平行投影法能准确、完整地表达出形体的形状和结构,且能准确、完整地表达出形体的形状和结构,且作图简便,度量性较好,故广泛用于工程图。作图简便,度量性较好,故广泛用于工程图。投影特性投影特性投影体投影体ACB投影面投影面立体感较差。立体感较差。投影体投影体ACB投影面投影面abc斜投影斜投影投射线倾斜投射线倾斜于投影面于投影面abc正投影正投影正投影法正投影法投射线互相平行且垂直于投影面投射线互相平行且垂直于投影面斜投影法斜投影法投射线互相平行且倾斜于投影面投射线互相平行且倾斜于投影面投射线垂直投射线垂直于投影面于投影面投影方法投影方法中心投影法中心投影法平行投影法平行投影法正投影法正投影法斜投影法斜投影法画透视图画透视图画斜轴测图画斜轴测图 画标高图画标高图及及正轴测图正轴测图单面投影单面投影多面投影多面投影画工程图样画工程图样投影的基本知识投影的基本知识投影法介绍投影法介绍多面正投影应用多面正投影应用组合体组合体2.22.2正投影的基本性质正投影的基本性质2.投影的基本知识投影的基本知识2.22.2正投影的基本性质正投影的基本性质2.2.1显实显实性性当空间直线或平面平行于投当空间直线或平面平行于投影面时,其投影反映直线的实影面时,其投影反映直线的实长或平面的实形,这种投影性长或平面的实形,这种投影性质称为质称为显实性显实性。2.22.2正投影的基本性质正投影的基本性质2.投影的基本知识投影的基本知识2.22.2正投影的基本性质正投影的基本性质2.2.2积聚性积聚性 当直线或平面垂直于投当直线或平面垂直于投影面时,其投影积聚为一影面时,其投影积聚为一点或一条直线,点或一条直线,这种投影这种投影性质称为性质称为积聚积聚性性。2.22.2正投影的基本性质正投影的基本性质2.投影的基本知识投影的基本知识2.22.2正投影的基本性质正投影的基本性质2.2.3类似性类似性当空间直线或平面倾斜于投当空间直线或平面倾斜于投影面时,其投影仍为直线或与影面时,其投影仍为直线或与之类似的平面图形,其投影的之类似的平面图形,其投影的长度变短或面积变小,长度变短或面积变小,这种投这种投影性质称为影性质称为类似类似性性。2.3.2.3.三视图的形成及投影规律三视图的形成及投影规律 2.投影的基本知识投影的基本知识2.3.2.3.三视图的形成及投影规律三视图的形成及投影规律2.3.1三面投影体系及三视图的形成三面投影体系及三视图的形成 一般只用一个方向的投影来表达形体是不确定的,通常须将形一般只用一个方向的投影来表达形体是不确定的,通常须将形体向几个方向投影,才能完整清晰地表达出形体的形状和结构。体向几个方向投影,才能完整清晰地表达出形体的形状和结构。2.3.1三面投影体系及三视图的形成三面投影体系及三视图的形成2.3.1三面投影体系及三视图的形成三面投影体系及三视图的形成 设立三个互相垂直的设立三个互相垂直的投影投影平面,构成三面投影体系。这平面,构成三面投影体系。这三个平面将空间分为八个分角,三个平面将空间分为八个分角,(GB4458.1(GB4458.184)84)规定:采用规定:采用第一角投影法,第一角投影法,三面投影体系三面投影体系2.3.1三面投影体系及三视图的形成三面投影体系及三视图的形成 设立三个互相垂直的设立三个互相垂直的投影投影平面,构成三面投影体系。这平面,构成三面投影体系。这三个平面将空间分为八个分角,三个平面将空间分为八个分角,(GB4458.1(GB4458.184)84)规定:采用规定:采用第一角投影法,第一角投影法,第一分角第一分角2.3.1三面投影体系及三视图的形成三面投影体系及三视图的形成直观图直观图2.3.1三面投影体系及三视图的形成三面投影体系及三视图的形成三视图的形成三视图的形成展开投影面展开投影面三视图的形成三视图的形成展开后的三视图展开后的三视图三视图的形成三视图的形成三视图三视图 在三投影面体系中摆放形体时,应使形体的多数表面在三投影面体系中摆放形体时,应使形体的多数表面(或或主要表面主要表面)平行或垂直于投影面平行或垂直于投影面(即形体正放即形体正放)。形体在三投影面体系中的位置一经选定,在投影过程中形体在三投影面体系中的位置一经选定,在投影过程中不能移动或变更。不能移动或变更。2.3.2三视图的对应影规律三视图的对应影规律三视图间的位置关系三视图间的位置关系 俯视图俯视图(H(H面面)在主视图在主视图(V(V面面)的正下方;的正下方;左视图左视图(W W面面)在主视图在主视图(V(V面面)的正右方,这的正右方,这种位置关系,在一般情况下是不允许变动的。种位置关系,在一般情况下是不允许变动的。直观图直观图 W位置关系位置关系俯视(产生H面投影)左视(产生W面投影)主视(产生V面投影)三视图间的对应关系三视图间的对应关系三视图间的对应关系三视图间的对应关系 V V面、面、H H面(面(主、俯视图)主、俯视图)长对正长对正。V V面、面、W W面(面(主、左视图)主、左视图)高平齐高平齐。H H面、面、W W面(面(俯、左视图)俯、左视图)宽相等宽相等。直观图直观图总体三等总体三等局部三等局部三等形体与视图的方位关系形体与视图的方位关系形体与视图的方位关系形体与视图的方位关系 V V面面(主视图主视图)反映了形体的反映了形体的上、下、左、右上、下、左、右方位关系;方位关系;H H面面(俯视图俯视图)反映了形体的反映了形体的左、右、前、后左、右、前、后方位关系;方位关系;W W面面(左视图左视图)反映了形体的反映了形体的上、下、前、后上、下、前、后位置关系。位置关系。直观图直观图三视图的方位关系三视图的方位关系第六章第六章 点点.直线直线.平面的投影平面的投影v点的投影点的投影v直线的投影直线的投影v平面的投影平面的投影 点的投影点的投影v点的三面投影点的三面投影v点的空间位置点的空间位置v两点的相对位置两点的相对位置面点、直线、平面是构成形体的基本几何元素点、直线、平面是构成形体的基本几何元素BCDA线点的投影点的投影点点的三面投影P 采用多面投影。采用多面投影。过空间点过空间点A的投射线的投射线与投影面与投影面P的交点即为点的交点即为点A在在P面上的投影。面上的投影。a A 点在一个投影面上的投影点在一个投影面上的投影不能确定点的空间位置。不能确定点的空间位置。Pb BB2B1解决办法解决办法HWV投影面与投影轴投影面与投影轴OV面与面与H面的交线面的交线OX轴轴V面与面与W面的交线面的交线OZ轴轴H面与面与W面的交线面的交线OY轴轴点的三面的投影点的三面的投影YXZ空间点空间点A A;a a 点点A的水平的水平(H)投影投影;a a 点点A的正面的正面(V)投影投影;a a 点点A的侧面的侧面(W)投影。投影。点的三面投影点的三面投影空间点的位置和直角坐标空间点的位置和直角坐标 空间点的位置,可由空间点的位置,可由直角坐标值来确定,直角坐标值来确定,一般采用下列的书写一般采用下列的书写形式:形式:A(x,y,z)A(x,y,z)。点到各投影面的点到各投影面的距离,为相应的坐标距离,为相应的坐标数值数值X X,Y Y,Z Z 。W投影面展开投影面展开XVAYOWZaa Ya ZaXaaVHYWHH面向下旋转面向下旋转面向下旋转面向下旋转9090HWW面向右旋转面向右旋转面向右旋转面向右旋转9090OXZYHaxaza ayayaaV V面不动面不动面不动面不动v a aOX轴轴;a a OZ轴轴;a到到OX轴轴的距离的距离=a 到到OZ轴轴的距离的距离 AaAa=aa=aax x=a a az z=a=ay y0=y0=yA AA A点到点到V面的距离面的距离 Aa=Aa=a ax x=a a ay y=a=az z0=z0=zA AA A点到点到H面的距离面的距离 Aa a=aa=aay y=a a az z=a=ax x0=x0=xA AA A点到点到W面的距离面的距离 点的点的三面三面投影规律投影规律:XVYOWZaa Ya ZaXaaHZAYAXAA例例1:已知已知A点的坐标值点的坐标值A(12,10,15),求作,求作A点的点的 三面投影图。三面投影图。作投影作投影轴轴;量取:量取:OaOax x=12=12、OaOaz z=15=15、OaOaYHYH=Oa=OaYWYW=10,=10,得得a ax x、a az z、OaOaYHYH、OaOaYWYW等点等点 ;步骤步骤:aaaOXYWHYZaZ15YWaYHa10aX12过过a ax x、a az z、a aYHYH、a aYWYW等点分别作等点分别作所在轴的垂线,交点所在轴的垂线,交点a a、a a、a a既为所求。既为所求。a aax例例2:已知点的两个投影,求第三投影。:已知点的两个投影,求第三投影。a a aaxazaz解法一解法一:解法二解法二:a 通过作通过作45线使线使a az=aax用圆规直接量取用圆规直接量取a az=aax点的空间位置1.在空间在空间(X X,Y Y,Z Z)点在投影体系中有点在投影体系中有四种位置情况:四种位置情况:XVYOWZH 由于由于X X,Y Y,Z Z均不为零,均不为零,对三个投影面都有一定对三个投影面都有一定距离,所以点的三个投距离,所以点的三个投影都不在轴上。影都不在轴上。a Zaaa YaXaA点的空间位置点的空间位置 由于点在投影面上,点对该投影面的距离为零。所以,点在该投影由于点在投影面上,点对该投影面的距离为零。所以,点在该投影面上的投影与空间点重合,另两投影在该投影面的两根投影轴上。面上的投影与空间点重合,另两投影在该投影面的两根投影轴上。2.在投影面上:在投影面上:在在H H面上面上(X X,Y Y,0 0)XVYOWZH 在在V V面上面上(X X,0 0,Z Z)在在W W面上面上(0 0,Y Y,Z Z)bBCdbCdDbdCC点的相对位置两点的相对位置指两点在空间的两点的相对位置指两点在空间的上下、前后、左右上下、前后、左右位置关系。位置关系。x 坐标大的在左;坐标大的在左;y 坐标大的在前;坐标大的在前;z 坐标大的在上。坐标大的在上。判断方法:判断方法:B点在点在A点点的的左、下、前方。左、下、前方。上上上上下下下下后后后后左左左左右右右右前前前前当空间两点到两个投影面的距离都分别对应相等时,该两点当空间两点到两个投影面的距离都分别对应相等时,该两点处于同一投射线上,它们在该投射线所垂直的投影面上的投影处于同一投射线上,它们在该投射线所垂直的投影面上的投影重合在一起,这两点称为对该投影面的重影点。重合在一起,这两点称为对该投影面的重影点。两点重影重影点需要判断其可见性,将不可见点的投影用括号括起来,重影点需要判断其可见性,将不可见点的投影用括号括起来,以示区别。以示区别。()H面重影,面重影,被挡被挡住的投影加住的投影加()直线的投影 两点确定一条直线,将两点的同两点确定一条直线,将两点的同面投影用直线连接,就得到直线的面投影用直线连接,就得到直线的投影。投影。直线平行于投影面直线平行于投影面投影反映线段实长投影反映线段实长 ab=AB 真实性真实性直线垂直于投影面直线垂直于投影面投影重合为一点投影重合为一点ab=0 积聚性积聚性abmBAM直线倾斜于投影面直线倾斜于投影面投影比空间线段短投影比空间线段短 abAB 类似性类似性各种位置直线的投影特征各种位置直线的投影特征ABababAB直线中的投影特性投影面平行线投影面平行线平行于某一投影面而平行于某一投影面而与其余两投影面倾斜与其余两投影面倾斜投影面垂直线投影面垂直线正平线正平线(平行于面)(平行于面)侧平线侧平线(平行于面)(平行于面)水平线水平线(平行于面)(平行于面)正垂线正垂线(垂直于面)(垂直于面)侧垂线侧垂线(垂直于面)(垂直于面)铅垂线铅垂线(垂直于面)(垂直于面)一般位置直线一般位置直线与三个投影面都倾斜的直线与三个投影面都倾斜的直线统称特殊位置直线统称特殊位置直线垂直于某一投影面垂直于某一投影面投影特性:投影特性:三个投影都缩短了。即三个投影都缩短了。即:都不反映空间线段的实都不反映空间线段的实长及与三个投影面夹角,且与三根投影轴都倾斜。长及与三个投影面夹角,且与三根投影轴都倾斜。(1)一般位置直线(2)投影面平行线投影特性:投影特性:1.水平线的水平线的H面投影反映线段实长。即:面投影反映线段实长。即:ab=AB;2.水平线的水平线的V、W面投影分别平行于面投影分别平行于H面的两根轴。面的两根轴。即即 abox轴,轴,abOYW轴;轴;3.水水平平线线的的H面面投投影影与与OX轴轴夹夹角角反反映映该该直直线线对对V面面的的倾倾角角;与与OYH轴的夹角,反映该直线对轴的夹角,反映该直线对W面的倾角面的倾角。水平线的投影特征:水平线的投影特征:对正平线和侧平线作分析,可得出类似的投影特征。对正平线和侧平线作分析,可得出类似的投影特征。b a aba b b aa b ba 投影面平行线投影面平行线1.在其平行的那个投影面上的投影反映实长,在其平行的那个投影面上的投影反映实长,并反映直线与另两投影面倾角。并反映直线与另两投影面倾角。2.另两个投影面上的投影平行于相应的投影轴。另两个投影面上的投影平行于相应的投影轴。水平线水平线侧平线侧平线正平线正平线投投 影影 特特 性:性:与与H面的夹角面的夹角:与与V面的角面的角:与与W面的夹角面的夹角:实长实长实长实长实长实长ba aa b b(3)投影面垂直线投影特性:投影特性:1.H面投影积聚成一点;面投影积聚成一点;2.V、W面投影反映实长,即面投影反映实长,即ab=ab=AB;V、W面投影,分别垂直于面投影,分别垂直于H面的两面根轴,即:面的两面根轴,即:abox轴轴ab oz轴轴。对正垂线和侧垂线作分析,可得出类似的投影特征。对正垂线和侧垂线作分析,可得出类似的投影特征。铅垂线投影特征铅垂线投影特征:投影面垂直线投影面垂直线铅垂线铅垂线正垂线正垂线侧垂线侧垂线2.另外两个投影面上,另外两个投影面上,投影反映线段实长。投影反映线段实长。且垂直于相应的投影轴。且垂直于相应的投影轴。1.在其垂直的投影面上,在其垂直的投影面上,投影有积聚性投影有积聚性。投影特性投影特性:c(d)cdd c a b a(b)a b e f efe(f)积聚积聚为点为点积聚积聚为点为点积聚积聚为点为点例1:判断下列直线的空间位置dCdddCABAB为水平线为水平线为水平线为水平线CDCD为侧平线为侧平线为侧平线为侧平线例例2:判断点:判断点K是否在线段是否在线段AB上。(上。(直线直线与点的相对位置与点的相对位置)a b k 因因k 不在不在a b 上,上,故点故点K不在不在AB上。上。应用定比定理应用定比定理abka b k 另一判断法是另一判断法是因因a k:k b ak:kb 故点故点K不在不在AB上。上。各种位置平面的投影特性各种位置平面的投影特性平行平行垂直垂直倾斜倾斜投投 影影 特特 性性 平面平行投影面平面平行投影面-投影就把实形现投影就把实形现 平面垂直投影面平面垂直投影面-投影积聚成直线投影积聚成直线 平面倾斜投影面平面倾斜投影面-投影类似原平面投影类似原平面实形性实形性类似性类似性积聚性积聚性平面对一个投影面的投影特性平面对一个投影面的投影特性平面在三投影面体系中的投影特性平面在三投影面体系中的投影特性平面对于三投影面的位置可分为三类平面对于三投影面的位置可分为三类:投影面垂直面投影面垂直面 投影面平行面投影面平行面一般位置平面一般位置平面特殊位置平面特殊位置平面垂直于某一投影面,垂直于某一投影面,倾斜于另两个投影面倾斜于另两个投影面平行于某一投影面,平行于某一投影面,垂直于另两个投影面垂直于另两个投影面与三个投影面都倾斜与三个投影面都倾斜 正垂面正垂面 侧垂面侧垂面 铅垂面铅垂面 正平面正平面 侧平面侧平面 水平面水平面投影面垂直面投影面垂直面ABC为什么为什么位置的平面位置的平面abca c b c b a 投影面垂直面投影面垂直面铅垂面铅垂面投影特性:投影特性:在它垂直的投影面上的投影积聚成直在它垂直的投影面上的投影积聚成直线。该直线与投影轴的夹角反映空间平面线。该直线与投影轴的夹角反映空间平面与另外两投影面夹角的大小。与另外两投影面夹角的大小。另外两个投影面上的投影有类似性。另外两个投影面上的投影有类似性。为什么?为什么?类似性类似性类似性类似性积聚性积聚性投影面平行面投影面平行面a b c a b c abc2.2.投影面平行面投影面平行面积聚性积聚性积聚性积聚性实形性实形性结论:水平面结论:水平面投影特性:投影特性:在它所平行的投影面上的投影反映实形。在它所平行的投影面上的投影反映实形。另两个投影面上的投影分别积聚成与相应另两个投影面上的投影分别积聚成与相应的投影轴平行的直线。的投影轴平行的直线。a b c a c b abc 一般位置平面一般位置平面三个投影都类似。三个投影都类似。投影特性:投影特性:平面上的直线和点平面上的直线和点判断直线在平面判断直线在平面内的方法内的方法 定定 理理 一一若一直线过平面若一直线过平面上的两点,则此上的两点,则此直线必在该平面直线必在该平面内。内。定定 理理 二二若一直线过平面上的若一直线过平面上的一点,且平行于该平一点,且平行于该平面上的另一直线,则面上的另一直线,则此直线在该平面内。此直线在该平面内。平面上取任意直线平面上取任意直线有无数解。有无数解。abcb c a abcb c a d mnn m d例例1:已知平面由直线:已知平面由直线AB、AC所确定,试所确定,试 在平面内任作一条直线。在平面内任作一条直线。解法一:解法一:解法二:解法二:根据定理一根据定理一有多少解有多少解根据定理二根据定理二