【苏科版】江苏省无锡市梁溪区重点中学2023年中考考前最后一卷数学试卷含解析.doc
-
资源ID:87068641
资源大小:528KB
全文页数:20页
- 资源格式: DOC
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
【苏科版】江苏省无锡市梁溪区重点中学2023年中考考前最后一卷数学试卷含解析.doc
2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题只有一个正确答案,每小题3分,满分30分)10.2的相反数是()A0.2B±0.2C0.2D22二次函数y=ax2+bx2(a0)的图象的顶点在第三象限,且过点(1,0),设t=ab2,则t值的变化范围是()A2t0B3t0C4t2D4t03在平面直角坐标系中,点A的坐标是(1,0),点B的坐标是(3,0),在y轴的正半轴上取一点C,使A、B、C三点确定一个圆,且使AB为圆的直径,则点C的坐标是()A(0,)B(,0)C(0,2)D(2,0)4下列关于x的方程中,属于一元二次方程的是()Ax1=0Bx2+3x5=0Cx3+x=3Dax2+bx+c=05如图,在平行四边形ABCD中,AB=4,BC=6,分别以A,C为圆心,以大于AC的长为半径作弧,两弧相交于M,N两点,作直线MN交AD于点E,则CDE的周长是()A7B10C11D126下列四个几何体中,主视图是三角形的是()ABCD7已知,则的值是A60B64C66D728若x是2的相反数,|y|=3,则的值是()A2B4C2或4D2或49把边长相等的正六边形ABCDEF和正五边形GHCDL的CD边重合,按照如图所示的方式叠放在一起,延长LG交AF于点P,则APG()A141°B144°C147°D150°10剪纸是水族的非物质文化遗产之一,下列剪纸作品是中心对称图形的是()ABCD二、填空题(共7小题,每小题3分,满分21分)11图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则1+2+3+4+5= 度12已知点P(3,1)关于y轴的对称点Q的坐标是(a+b,1b),则ab的值为_13化简:_.14对于二次函数yx24x+4,当自变量x满足ax3时,函数值y的取值范围为0y1,则a的取值范围为_15分解因式:2x28xy+8y2= 16将函数y=3x+1的图象沿y轴向下平移2个单位长度,所得直线的函数表达式为_17如图,ABC中,ACB=90°,ABC=25°,以点C为旋转中心顺时针旋转后得到ABC,且点A在AB上,则旋转角为_°. 三、解答题(共7小题,满分69分)18(10分)如图,把EFP按图示方式放置在菱形ABCD中,使得顶点E、F、P分别在线段AB、AD、AC上,已知EPFP4,EF4,BAD60°,且AB4(1)求EPF的大小;(2)若AP=6,求AEAF的值.19(5分)如图,已知:正方形ABCD,点E在CB的延长线上,连接AE、DE,DE与边AB交于点F,FGBE交AE于点G(1)求证:GF=BF;(2)若EB=1,BC=4,求AG的长;(3)在BC边上取点M,使得BM=BE,连接AM交DE于点O求证:FOED=ODEF20(8分)如图,已知AOB=45°,ABOB,OB=1(1)利用尺规作图:过点M作直线MNOB交AB于点N(不写作法,保留作图痕迹);(1)若M为AO的中点,求AM的长21(10分)阅读 (1)阅读理解:如图,在ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将ACD绕着点D逆时针旋转180°得到EBD),把AB,AC,2AD集中在ABE中,利用三角形三边的关系即可判断中线AD的取值范围是_; (2)问题解决:如图,在ABC中,D是BC边上的中点,DEDF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CFEF; (3)问题拓展:如图,在四边形ABCD中,B+D=180°,CB=CD,BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E,F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明22(10分)已知关于x的一元二次方程有实数根(1)求k的取值范围;(2)若k为正整数,且方程有两个非零的整数根,求k的取值23(12分)在平面直角坐标系xOy中,点A在x轴的正半轴上,点B的坐标为(0,4),BC平分ABO交x轴于点C(2,0)点P是线段AB上一个动点(点P不与点A,B重合),过点P作AB的垂线分别与x轴交于点D,与y轴交于点E,DF平分PDO交y轴于点F设点D的横坐标为t(1)如图1,当0t2时,求证:DFCB;(2)当t0时,在图2中补全图形,判断直线DF与CB的位置关系,并证明你的结论;(3)若点M的坐标为(4,-1),在点P运动的过程中,当MCE的面积等于BCO面积的倍时,直接写出此时点E的坐标24(14分)根据图中给出的信息,解答下列问题:放入一个小球水面升高 ,放入一个大球水面升高 ;如果要使水面上升到50,应放入大球、小球各多少个?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】根据相反数的定义进行解答即可.【详解】负数的相反数是它的绝对值,所以0.2的相反数是0.2.故选A.【点睛】本题主要考查相反数的定义,熟练掌握这个知识点是解题关键.2、D【解析】由二次函数的解析式可知,当x=1时,所对应的函数值y=a+b-2,把点(1,0)代入y=ax2+bx-2,a+b-2=0,然后根据顶点在第三象限,可以判断出a与b的符号,进而求出t=a-b-2的变化范围【详解】解:二次函数y=ax2+bx-2的顶点在第三象限,且经过点(1,0)该函数是开口向上的,a>0y=ax2+bx2过点(1,0),a+b-2=0.a>0,2-b>0.顶点在第三象限,-<0.b>0.2-a>0.0<b<2.0<a<2.t=a-b-2.4t0.【点睛】本题考查大小二次函数的图像,熟练掌握图像的性质是解题的关键.3、A【解析】直接根据AOCCOB得出OC2=OAOB,即可求出OC的长,即可得出C点坐标【详解】如图,连结AC,CB. 依AOCCOB的结论可得:OC2=OA×OB,即OC2=1×3=3,解得:OC=或 (负数舍去),故C点的坐标为(0, ).故答案选:A.【点睛】本题考查了坐标与图形性质,解题的关键是熟练的掌握坐标与图形的性质.4、B【解析】根据一元二次方程必须同时满足三个条件:整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;只含有一个未知数;未知数的最高次数是2进行分析即可【详解】A. 未知数的最高次数不是2 ,不是一元二次方程,故此选项错误;B. 是一元二次方程,故此选项正确;C. 未知数的最高次数是3,不是一元二次方程,故此选项错误;D. a=0时,不是一元二次方程,故此选项错误;故选B.【点睛】本题考查一元二次方程的定义,解题的关键是明白:一元二次方程必须同时满足三个条件:整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;只含有一个未知数;未知数的最高次数是2.5、B【解析】四边形ABCD是平行四边形,AD=BC=4,CD=AB=6,由作法可知,直线MN是线段AC的垂直平分线,AE=CE,AE+DE=CE+DE=AD,CDE的周长=CE+DE+CD=AD+CD=4+6=1故选B6、D【解析】主视图是从几何体的正面看,主视图是三角形的一定是一个锥体,是长方形的一定是柱体,由此分析可得答案【详解】解:主视图是三角形的一定是一个锥体,只有D是锥体故选D【点睛】此题主要考查了几何体的三视图,主要考查同学们的空间想象能力7、A【解析】将代入原式,计算可得【详解】解:当时,原式,故选A【点睛】本题主要考查分式的加减法,解题的关键是熟练掌握完全平方公式8、D【解析】直接利用相反数以及绝对值的定义得出x,y的值,进而得出答案【详解】解:x是1的相反数,|y|=3,x=-1,y=±3,y-x=4或-1故选D【点睛】此题主要考查了有理数的混合运算,正确得出x,y的值是解题关键9、B【解析】先根据多边形的内角和公式分别求得正六边形和正五边形的每一个内角的度数,再根据多边形的内角和公式求得APG的度数【详解】(62)×180°÷6120°,(52)×180°÷5108°,APG(62)×180°120°×3108°×2720°360°216°144°,故选B【点睛】本题考查了多边形内角与外角,关键是熟悉多边形内角和定理:(n2)180 (n3)且n为整数)10、D【解析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可【详解】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选:D【点睛】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义二、填空题(共7小题,每小题3分,满分21分)11、360°【解析】根据多边形的外角和等于360°解答即可【详解】由多边形的外角和等于360°可知,1+2+3+4+5=360°,故答案为360°【点睛】本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键12、2【解析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出ab的值即可【详解】点P(3,1)关于y轴的对称点Q的坐标是(a+b,1b),a+b=-3,-1-b=1;解得a=-1,b=-2,ab=2.故答案为2.【点睛】本题考查了关于x轴,y轴对称的点的坐标,解题的关键是熟练的掌握关于y轴对称的点的坐标的性质.13、【解析】根据分式的运算法则即可求解.【详解】原式=.故答案为:.【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.14、1a1【解析】根据y的取值范围可以求得相应的x的取值范围【详解】解:二次函数yx14x+4(x1)1,该函数的顶点坐标为(1,0),对称轴为:x,把y0代入解析式可得:x1,把y1代入解析式可得:x13,x11,所以函数值y的取值范围为0y1时,自变量x的范围为1x3,故可得:1a1,故答案为:1a1【点睛】此题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答15、1(x1y)1【解析】试题分析:1x18xy+8y1=1(x14xy+4y1)=1(x1y)1故答案为:1(x1y)1考点:提公因式法与公式法的综合运用16、y=3x-1【解析】y=3x+1的图象沿y轴向下平移2个单位长度,平移后所得图象对应的函数关系式为:y=3x+12,即y=3x1故答案为y=3x117、50度【解析】由将ACB绕点C顺时针旋转得到ABC,即可得ACBABC,则可得A'=BAC,AA'C是等腰三角形,又由ACB中,ACB=90°,ABC=25°,即可求得A'、B'AB的度数,即可求得ACB'的度数,继而求得B'CB的度数【详解】将ACB绕点C顺时针旋转得到,ACB,A=BAC,AC=CA,BAC=CAA,ACB中,ACB=90°,ABC=25°,BAC=90ABC=65°,BAC=CAA=65°,BAB=180°65°65°=50°,ACB=180°25°50°65°=40°,BCB=90°40°=50°.故答案为50.【点睛】此题考查了旋转的性质、直角三角形的性质以及等腰三角形的性质此题难度不大,注意掌握旋转前后图形的对应关系,注意数形结合思想的应用三、解答题(共7小题,满分69分)18、(1)EPF120°;(2)AEAF6.【解析】试题分析: (1)过点P作PGEF于G,解直角三角形即可得到结论;(2)如图2,过点P作PMAB于M,PNAD于N,证明ABCADC,RtPMERtPNF,问题即可得证.试题解析:(1)如图1,过点P作PGEF于G,PE=PF,FG=EG=EF=2,FPG=EPGEPF,在FPG中,sinFPG= ,FPG=60°,EPF=2FPG=120°;(2)如图2,过点P作PMAB于M,PNAD于N,四边形ABCD是菱形,AD=AB,DC=BC,DAC=BAC,PM=PN,在RtPME于RtPNF中, ,RtPMERtPNF,FN=EM,在RtPMA中,PMA=90°,PAM= DAB=30°,AM=APcos30°=3 ,同理AN=3 ,AE+AF=(AM-EM)+(AN+NF)=6.【点睛】运用了菱形的性质,解直角三角形,全等三角形的判定和性质,最值问题,等腰三角形的性质,作辅助线构造直角三角形是解题的关键19、(1)证明见解析;(2)AG=;(3)证明见解析.【解析】(1)根据正方形的性质得到ADBC,ABCD,ADCD,根据相似三角形的性质列出比例式,等量代换即可;(2)根据勾股定理求出AE,根据相似三角形的性质计算即可;(3)延长GF交AM于H,根据平行线分线段成比例定理得到,由于BMBE,得到GFFH,由GFAD,得到,等量代换得到,即,于是得到结论【详解】解:(1)四边形ABCD是正方形,ADBC,ABCD,AD=CD,GFBE,GFBC,GFAD,ABCD,AD=CD,GF=BF;(2)EB=1,BC=4,=4,AE=,=4,AG=;(3)延长GF交AM于H,GFBC,FHBC,BM=BE,GF=FH,GFAD, ,FOED=ODEF【点睛】本题主要考查平行线分线段成比例及正方形的性质,掌握平行线分线段中的线段对应成比例是解题的关键,注意利用比例相等也可以证明线段相等20、(1)详见解析;(1).【解析】(1)以点M为顶点,作AMN=O即可; (1)由AOB=45°,ABOB,可知AOB为等腰为等腰直角三角形,根据勾股定理求出OA的长,即可求出AM的值.【详解】(1)作图如图所示;(1)由题知AOB为等腰RtAOB,且OB=1,所以,AO=OB=1又M为OA的中点,所以,AM=1=【点睛】本题考查了尺规作图,等腰直角三角形的判定,勾股定理等知识,熟练掌握作一个角等于已知角是解(1)的关键,证明AOB为等腰为等腰直角三角形是解(1)的关键.21、(1)2AD8;(2)证明见解析;(3)BE+DF=EF;理由见解析.【解析】试题分析:(1)延长AD至E,使DE=AD,由SAS证明ACDEBD,得出BE=AC=6,在ABE中,由三角形的三边关系求出AE的取值范围,即可得出AD的取值范围;(2)延长FD至点M,使DM=DF,连接BM、EM,同(1)得BMDCFD,得出BM=CF,由线段垂直平分线的性质得出EM=EF,在BME中,由三角形的三边关系得出BE+BMEM即可得出结论;(3)延长AB至点N,使BN=DF,连接CN,证出NBC=D,由SAS证明NBCFDC,得出CN=CF,NCB=FCD,证出ECN=70°=ECF,再由SAS证明NCEFCE,得出EN=EF,即可得出结论试题解析:(1)解:延长AD至E,使DE=AD,连接BE,如图所示:AD是BC边上的中线,BD=CD,在BDE和CDA中,BD=CD,BDE=CDA,DE=AD,BDECDA(SAS),BE=AC=6,在ABE中,由三角形的三边关系得:ABBEAEAB+BE,106AE10+6,即4AE16,2AD8;故答案为2AD8;(2)证明:延长FD至点M,使DM=DF,连接BM、EM,如图所示:同(1)得:BMDCFD(SAS),BM=CF,DEDF,DM=DF,EM=EF,在BME中,由三角形的三边关系得:BE+BMEM,BE+CFEF;(3)解:BE+DF=EF;理由如下:延长AB至点N,使BN=DF,连接CN,如图3所示:ABC+D=180°,NBC+ABC=180°,NBC=D,在NBC和FDC中,BN=DF,NBC =D,BC=DC,NBCFDC(SAS),CN=CF,NCB=FCD,BCD=140°,ECF=70°,BCE+FCD=70°,ECN=70°=ECF,在NCE和FCE中,CN=CF,ECN=ECF,CE=CE,NCEFCE(SAS),EN=EF,BE+BN=EN,BE+DF=EF考点:全等三角形的判定和性质;三角形的三边关系定理.22、(1);(2)k1【解析】(1)根据一元二次方程2x2+4x+k1=0有实数根,可得出0,解不等式即可得出结论;(2)分别把k的正整数值代入方程2x2+4x+k1=0,根据解方程的结果进行分析解答【详解】(1)由题意得:=168(k1)0,k1(2)k为正整数,k=1,2,1当k=1时,方程2x2+4x+k1=0变为:2x2+4x =0,解得:x=0或x=2,有一个根为零;当k=2时,方程2x2+4x+k1=0变为:2x2+4x +1=0,解得:x=,无整数根;当k=1时,方程2x2+4x+k1=0变为:2x2+4x +2=0,解得:x1=x2=1,有两个非零的整数根综上所述:k=1【点睛】本题考查了一元二次方程根的判别式:(1)0方程有两个不相等的实数根;(2)=0方程有两个相等的实数根;(1)0方程没有实数根23、(1)详见解析;(2)详见解析;(3)详见解析.【解析】(1)求出PBO+PDO=180°,根据角平分线定义得出CBO=PBO,ODF=PDO,求出CBO+ODF=90°,求出CBO=DFO,根据平行线的性质得出即可;(2)求出ABO=PDA,根据角平分线定义得出CBO=ABO,CDQ=PDO,求出CBO=CDQ,推出CDQ+DCQ=90°,求出CQD=90°,根据垂直定义得出即可;(3)分为两种情况:根据三角形面积公式求出即可【详解】(1)证明:如图1在平面直角坐标系xOy中,点A在x轴的正半轴上,点B的坐标为(0,4),AOB=90°DPAB于点P,DPB=90°,在四边形DPBO中,DPB+PBO+BOD+PDO=360°,PBO+PDO=180°,BC平分ABO,DF平分PDO,CBO=PBO,ODF=PDO,CBO+ODF=(PBO+PDO)=90°,在FDO中,OFD+ODF=90°,CBO=DFO,DFCB (2)直线DF与CB的位置关系是:DFCB,证明:延长DF交CB于点Q,如图2,在ABO中,AOB=90°,BAO+ABO=90°,在APD中,APD=90°,PAD+PDA=90°,ABO=PDA,BC平分ABO,DF平分PDO,CBO=ABO,CDQ=PDO,CBO=CDQ,在CBO中,CBO+BCO=90°,CDQ+DCQ=90°,在QCD中,CQD=90°,DFCB (3)解:过M作MNy轴于N,M(4,-1),MN=4,ON=1,当E在y轴的正半轴上时,如图3,MCE的面积等于BCO面积的倍时,×2×OE+×(2+4)×1-×4×(1+OE)=××2×4,解得:OE=,当E在y轴的负半轴上时,如图4,×(2+4)×1+×(OE-1)×4-×2×OE=××2×4,解得:OE=,即E的坐标是(0,)或(0,-)【点睛】本题考查了平行线的性质和判定,三角形内角和定理,坐标与图形性质,三角形的面积的应用,题目综合性比较强,有一定的难度24、详见解析【解析】(1)设一个小球使水面升高x厘米,一个大球使水面升高y厘米,根据图象提供的数据建立方程求解即可(1)设应放入大球m个,小球n个,根据题意列二元一次方程组求解即可【详解】解:(1)设一个小球使水面升高x厘米,由图意,得2x=2116,解得x=1设一个大球使水面升高y厘米,由图意,得1y=2116,解得:y=2所以,放入一个小球水面升高1cm,放入一个大球水面升高2cm(1)设应放入大球m个,小球n个,由题意,得,解得:答:如果要使水面上升到50cm,应放入大球4个,小球6个