2022-2023学年甘肃省天水市秦安县中考数学四模试卷含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1全球芯片制造已经进入10纳米到7纳米器件的量产时代中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米数据0.000000007用科学记数法表示为()A0.7×108B7×108C7×109D7×10102下列各式:a0=1 a2·a3=a5 22= (35)(2)4÷8×(1)=0x2+x2=2x2,其中正确的是 ( )ABCD3如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式ya(xk)2+h已知球与D点的水平距离为6m时,达到最高2.6m,球网与D点的水平距离为9m高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是()A球不会过网B球会过球网但不会出界C球会过球网并会出界D无法确定4如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD交于点H,连接DH,下列结论正确的是()ABGFDG HD平分EHG AGBE SHDG:SHBG=tanDAG 线段DH的最小值是22ABCD5如图,在射线OA,OB上分别截取OA1=OB1,连接A1B1,在B1A1,B1B上分别截取B1A2=B1B2,连接A2B2,按此规律作下去,若A1B1O=,则A10B10O=()ABCD6下列运算正确的是()A3a22a2=1Ba2a3=a6C(ab)2=a2b2D(a+b)2=a2+2ab+b27某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于,否则就有危险,那么梯子的长至少为( )A8米B米C米D米8(2017鄂州)如图四边形ABCD中,ADBC,BCD=90°,AB=BC+AD,DAC=45°,E为CD上一点,且BAE=45°若CD=4,则ABE的面积为( )A B C D9(3分)学校要组织足球比赛赛制为单循环形式(每两队之间赛一场)计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛根据题意,下面所列方程正确的是( )A B C D10如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔60n mile的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东30°方向上的B处,这时,B处与灯塔P的距离为()A60 n mileB60 n mileC30 n mileD30 n mile二、填空题(本大题共6个小题,每小题3分,共18分)11某商品原售价为100元,经连续两次涨价后售价为121元,设平均每次涨价的百分率为x,则依题意所列的方程是_12用黑白两种颜色的正六边形地面砖按如图所示的规律,拼成若干图案:第4个图案有白色地面砖_块;第n个图案有白色地面砖_块13在直角坐标系平面内,抛物线y=3x2+2x在对称轴的左侧部分是_的(填“上升”或“下降”)14如图,在平行四边形 ABCD 中,AB6,AD9,BAD 的平分线交BC 于点 E,交 DC 的延长线于点 F,BGAE,垂足为 G,BG4,则CEF 的周长为_15一组数据10,10,9,8,x的平均数是9,则这列数据的极差是_16阅读以下作图过程:第一步:在数轴上,点O表示数0,点A表示数1,点B表示数5,以AB为直径作半圆(如图);第二步:以B点为圆心,1为半径作弧交半圆于点C(如图);第三步:以A点为圆心,AC为半径作弧交数轴的正半轴于点M请你在下面的数轴中完成第三步的画图(保留作图痕迹,不写画法),并写出点M表示的数为_三、解答题(共8题,共72分)17(8分)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担李明按照相关政策投资销售本市生产的一种新型节能灯已知这种节能灯的成本价为每件元,出厂价为每件元,每月销售量(件)与销售单价(元)之间的关系近似满足一次函数:李明在开始创业的第一个月将销售单价定为元,那么政府这个月为他承担的总差价为多少元?设李明获得的利润为(元),当销售单价定为多少元时,每月可获得最大利润?物价部门规定,这种节能灯的销售单价不得高于元如果李明想要每月获得的利润不低于元,那么政府为他承担的总差价最少为多少元?18(8分)(1)计算:|3|+(+)0()22cos60°;(2)先化简,再求值:()+,其中a=2+19(8分)观察下列多面体,并把下表补充完整.名称三棱柱四棱柱五棱柱六棱柱图形顶点数61012棱数912面数58观察上表中的结果,你能发现、之间有什么关系吗?请写出关系式.20(8分)如图,在RtABC中,C90°,AC,tanB,半径为2的C分别交AC,BC于点D、E,得到DE弧求证:AB为C的切线求图中阴影部分的面积21(8分)甲、乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍两组各自加工零件的数量y(件)与时间x(时)之间的函数图象如下图所示(1)求甲组加工零件的数量y与时间x之间的函数关系式(2)求乙组加工零件总量a的值22(10分)中华文明,源远流长;中华汉字,寓意深广为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:频数频率分布表成绩x(分)频数(人)频率50x60100.0560x70300.1570x8040n80x90m0.3590x100500.25根据所给信息,解答下列问题:(1)m= ,n= ;(2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在 分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?23(12分)经过江汉平原的沪蓉(上海成都)高速铁路即将动工工程需要测量汉江某一段的宽度如图,一测量员在江岸边的A处测得对岸岸边的一根标杆B在它的正北方向,测量员从A点开始沿岸边向正东方向前进100米到达点C处,测得ACB=68°(1)求所测之处江的宽度(sin68°0.93,cos68°0.37,tan68°2.1);(2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图中画出图形(不用考虑计算问题,叙述清楚即可)24央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:此次共调查了 名学生;将条形统计图1补充完整;图2中“小说类”所在扇形的圆心角为 度;若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】本题根据科学记数法进行计算.【详解】因为科学记数法的标准形式为a×(1|a|10且n为整数),因此0.000000007用科学记数法法可表示为7×,故选C.【点睛】本题主要考察了科学记数法,熟练掌握科学记数法是本题解题的关键.2、D【解析】根据实数的运算法则即可一一判断求解.【详解】有理数的0次幂,当a=0时,a0=0;为同底数幂相乘,底数不变,指数相加,正确;中22= ,原式错误;为有理数的混合运算,正确;为合并同类项,正确故选D.3、C【解析】分析:(1)将点A(0,2)代入求出a的值;分别求出x=9和x=18时的函数值,再分别与2.43、0比较大小可得详解:根据题意,将点A(0,2)代入 得:36a+2.6=2,解得: y与x的关系式为 当x=9时, 球能过球网,当x=18时, 球会出界.故选C.点睛:考查二次函数的应用题,求范围的问题,可以利用临界点法求出自变量的值,根据题意确定范围.4、B【解析】首先证明ABEDCF,ADGCDG(SAS),AGBCGB,利用全等三角形的性质,等高模型、三边关系一一判断即可【详解】解:四边形ABCD是正方形,AB=CD,BAD=ADC=90°,ADB=CDB=45°.在ABE和DCF中,AB=CD,BAD=ADC,AE=DF,ABEDCF,ABE=DCF.在ADG和CDG中,AD=CD,ADB=CDB,DG=DG,ADGCDG,DAG=DCF,ABE=DAG.DAG+BAH=90°,BAE+BAH=90°,AHB=90°,AGBE,故正确,同理可证:AGBCGB.DFCB,CBGFDG,ABGFDG,故正确.SHDG:SHBG=DG:BG=DF:BC=DF:CD=tanFCD,DAG=FCD,SHDG:SHBG=tanFCD=tanDAG,故正确.取AB的中点O,连接OD、OH.正方形的边长为4,AO=OH=×4=1,由勾股定理得,OD=,由三角形的三边关系得,O、D、H三点共线时,DH最小,DH最小=1-1无法证明DH平分EHG,故错误,故正确.故选B.【点睛】本题考查了相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质,解直角三角形,解题的关键是掌握它们的性质进行解题.5、B【解析】根据等腰三角形两底角相等用表示出A2B2O,依此类推即可得到结论【详解】B1A2B1B2,A1B1O,A2B2O,同理A3B3O×,A4B4O,AnBnO,A10B10O,故选B【点睛】本题考查了等腰三角形两底角相等的性质,图形的变化规律,依次求出相邻的两个角的差,得到分母成2的指数次幂变化,分子不变的规律是解题的关键6、D【解析】根据合并同类项法则,可知3a22a2= a2,故不正确;根据同底数幂相乘,可知a2a3=a5,故不正确;根据完全平方公式,可知(ab)2=a22ab+b2,故不正确;根据完全平方公式,可知(a+b)2=a2+2ab+b2,正确.故选D.【详解】请在此输入详解!7、C【解析】此题考查的是解直角三角形如图:AC=4,ACBC,梯子的倾斜角(梯子与地面的夹角)不能60°ABC60°,最大角为60°即梯子的长至少为米,故选C.8、D【解析】解:如图取CD的中点F,连接BF延长BF交AD的延长线于G,作FHAB于H,EKAB于K作BTAD于TBCAG,BCF=FDG,BFC=DFG,FC=DF,BCFGDF,BC=DG,BF=FG,AB=BC+AD,AG=AD+DG=AD+BC,AB=AG,BF=FG,BFBG,ABF=G=CBF,FHBA,FCBC,FH=FC,易证FBCFBH,FAHFAD,BC=BH,AD=AB,由题意AD=DC=4,设BC=TD=BH=x,在RtABT中,AB2=BT2+AT2,(x+4)2=42+(4x)2,x=1,BC=BH=TD=1,AB=5,设AK=EK=y,DE=z,AE2=AK2+EK2=AD2+DE2,BE2=BK2+KE2=BC2+EC2,42+z2=y2,(5y)2+y2=12+(4z)2,由可得y=,SABE=×5×=,故选D点睛:本题考查直角梯形的性质、全等三角形的判定和性质、角平分线的性质定理、勾股定理、二元二次方程组等知识,解题的关键是学会添加常用辅助线,学会利用参数,构建方程解决问题,属于中考压轴题9、B【解析】试题分析:设有x个队,每个队都要赛(x1)场,但两队之间只有一场比赛,由题意得:,故选B考点:由实际问题抽象出一元二次方程10、B【解析】如图,作PEAB于E在RtPAE中,PAE=45°,PA=60n mile,PE=AE=×60=n mile,在RtPBE中,B=30°,PB=2PE=n mile故选B二、填空题(本大题共6个小题,每小题3分,共18分)11、100(1+x)2=121【解析】根据题意给出的等量关系即可求出答案【详解】由题意可知:100(1+x)2=121故答案为:100(1+x)2=121【点睛】本题考查一元二次方程的应用,解题的关键是正确找出等量关系,本题属于基础题型12、18块 (4n+2)块 【解析】由已知图形可以发现:前三个图形中白色地砖的块数分别为:6,10,14,所以可以发现每一个图形都比它前一个图形多4个白色地砖,所以可以得到第n个图案有白色地面砖(4n+2)块【详解】解:第1个图有白色块4+2,第2图有4×2+2,第3个图有4×3+2, 所以第4个图应该有4×4+2=18块, 第n个图应该有(4n+2)块【点睛】此题考查了平面图形,主要培养学生的观察能力和空间想象能力13、下降【解析】根据抛物线y=3x2+2x图像性质可得,在对称轴的左侧部分是下降的.【详解】解:在中,抛物线开口向上,在对称轴左侧部分y随x的增大而减小,即图象是下降的,故答案为下降【点睛】本题考查二次函数的图像及性质.根据抛物线开口方向和对称轴的位置即可得出结论.14、8【解析】试题解析:在ABCD中,AB=CD=6,AD=BC=9,BAD的平分线交BC于点E,BAF=DAF,ABDF,BAF=F,F=DAF,ADF是等腰三角形,AD=DF=9;ADBC,EFC是等腰三角形,且FC=CEEC=FC=9-6=3,AB=BE在ABG中,BGAE,AB=6,BG=4可得:AG=2,又BGAE,AE=2AG=4,ABE的周长等于16,又ABCD,CEFBEA,相似比为1:2,CEF的周长为815、1【解析】先根据平均数求出x,再根据极差定义可得答案【详解】由题意知=9,解得:x=8,这列数据的极差是10-8=1,故答案为1【点睛】本题主要考查平均数和极差,熟练掌握平均数的计算得出x的值是解题的关键16、作图见解析,【解析】解:如图,点M即为所求连接AC、BC由题意知:AB=4,BC=1AB为圆的直径,ACB=90°,则AM=AC=,点M表示的数为.故答案为点睛:本题主要考查作图尺规作图,解题的关键是熟练掌握尺规作图和圆周角定理及勾股定理三、解答题(共8题,共72分)17、(1)政府这个月为他承担的总差价为644元;(2)当销售单价定为34元时,每月可获得最大利润144元;(3)销售单价定为25元时,政府每个月为他承担的总差价最少为544元【解析】试题分析:(1)把x=24代入y=14x+544求出销售的件数,然后求出政府承担的成本价与出厂价之间的差价;(2)由利润=销售价成本价,得w=(x14)(14x+544),把函数转化成顶点坐标式,根据二次函数的性质求出最大利润;(3)令14x2+644x5444=2,求出x的值,结合图象求出利润的范围,然后设设政府每个月为他承担的总差价为p元,根据一次函数的性质求出总差价的最小值试题解析:(1)当x=24时,y=14x+544=14×24+544=344,344×(1214)=344×2=644元,即政府这个月为他承担的总差价为644元;(2)依题意得,w=(x14)(14x+544)=14x2+644x5444=14(x34)2+144a=144,当x=34时,w有最大值144元即当销售单价定为34元时,每月可获得最大利润144元;(3)由题意得:14x2+644x5444=2,解得:x1=24,x2=1a=144,抛物线开口向下,结合图象可知:当24x1时,w2又x25,当24x25时,w2设政府每个月为他承担的总差价为p元,p=(1214)×(14x+544)=24x+3k=244p随x的增大而减小,当x=25时,p有最小值544元即销售单价定为25元时,政府每个月为他承担的总差价最少为544元考点:二次函数的应用18、(1)-1;(2).【解析】(1)根据零指数幂的意义、特殊角的锐角三角函数以及负整数指数幂的意义即可求出答案;(2)先化简原式,然后将a的值代入即可求出答案【详解】(1)原式=3+1(2)22×=441=1;(2)原式=+=当a=2+时,原式=【点睛】本题考查了学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型19、8,15,18,6,7;【解析】分析:结合三棱柱、四棱柱和五棱柱的特点,即可填表,根据已知的面、顶点和棱与n棱柱的关系,可知n棱柱一定有(n+1)个面,1n个顶点和3n条棱,进而得出答案,利用前面的规律得出a,b,c之间的关系详解:填表如下:名称三棱柱四棱柱五棱柱六棱柱图形顶点数a681011棱数b9111518面数c5678根据上表中的规律判断,若一个棱柱的底面多边形的边数为n,则它有n个侧面,共有n+1个面,共有1n个顶点,共有3n条棱;故a,b,c之间的关系:a+c-b=1点睛:此题通过研究几个棱柱中顶点数、棱数、面数的关系探索出n棱柱中顶点数、棱数、面数之间的关系(即欧拉公式),掌握常见棱柱的特征,可以总结一般规律:n棱柱有(n+1)个面,1n个顶点和3n条棱是解题关键20、 (1)证明见解析;(2)1-.【解析】(1)解直角三角形求出BC,根据勾股定理求出AB,根据三角形面积公式求出CF,根据切线的判定得出即可;(2)分别求出ACB的面积和扇形DCE的面积,即可得出答案【详解】(1)过C作CFAB于F在RtABC中,C90°,AC,tanB,BC2,由勾股定理得:AB1ACB的面积S,CF2,CF为C的半径CFAB,AB为C的切线;(2)图中阴影部分的面积SACBS扇形DCE1【点睛】本题考查了勾股定理,扇形的面积,解直角三角形,切线的性质和判定等知识点,能求出CF的长是解答此题的关键21、(1)y=60x;(2)300【解析】(1)由题图可知,甲组的y是x的正比例函数.设甲组加工的零件数量y与时间x的函数关系式为y=kx.根据题意,得6k=360,解得k=60.所以,甲组加工的零件数量y与时间x之间的关系式为y=60x.(2)当x=2时,y=100.因为更换设备后,乙组工作效率是原来的2倍.所以,解得a=300.22、(1)70,0.2;(2)补图见解析;(3)80x90;(4)750人.【解析】分析:(1)根据第一组的频数是10,频率是0.05,求得数据总数,再用数据总数乘以第四组频率可得m的值,用第三组频数除以数据总数可得n的值;(2)根据(1)的计算结果即可补全频数分布直方图;(3)根据中位数的定义,将这组数据按照从小到大的顺序排列后,处于中间位置的数据(或中间两数据的平均数)即为中位数;(4)利用总数3000乘以“优”等学生的所占的频率即可详解:(1)本次调查的总人数为10÷0.05=200,则m=200×0.35=70,n=40÷200=0.2,(2)频数分布直方图如图所示,(3)200名学生成绩的中位数是第100、101个成绩的平均数,而第100、101个数均落在80x90,这200名学生成绩的中位数会落在80x90分数段,(4)该校参加本次比赛的3000名学生中成绩“优”等的约有:3000×0.25=750(人)点睛:本题考查读频数(率)分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题也考查了中位数和利用样本估计总体23、 (1)21米(2)见解析【解析】试题分析:(1)根据题意易发现,直角三角形ABC中,已知AC的长度,又知道了ACB的度数,那么AB的长就不难求出了(2)从所画出的图形中可以看出是利用三角形全等、三角形相似、解直角三角形的知识来解决问题的解:(1)在RtBAC中,ACB=68°,AB=ACtan68°100×2.1=21(米)答:所测之处江的宽度约为21米(2)延长BA至C,测得AC做记录;从C沿平行于河岸的方向走到D,测得CD,做记录;测AE,做记录根据BAEBCD,得到比例线段,从而解答24、 (1)200;(2)见解析;(3)126°;(4)240人【解析】(1)根据文史类的人数以及文史类所占的百分比即可求出总人数(2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;(3)根据小说类的百分比即可求出圆心角的度数;(4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数【详解】(1)喜欢文史类的人数为76人,占总人数的38%,此次调查的总人数为:76÷38%200人,故答案为200;(2)喜欢生活类书籍的人数占总人数的15%,喜欢生活类书籍的人数为:200×15%30人,喜欢小说类书籍的人数为:20024763070人,如图所示:(3)喜欢社科类书籍的人数为:24人,喜欢社科类书籍的人数占了总人数的百分比为:×100%12%,喜欢小说类书籍的人数占了总分数的百分比为:100%15%38%12%35%,小说类所在圆心角为:360°×35%126°;(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数:2000×12%240人【点睛】此题考查扇形统计图和条形统计图,看懂图中数据是解题关键