2022-2023学年广东省揭阳市名校中考联考数学试题含解析.doc
-
资源ID:87068727
资源大小:915.50KB
全文页数:21页
- 资源格式: DOC
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022-2023学年广东省揭阳市名校中考联考数学试题含解析.doc
2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图图形中是中心对称图形的是()ABCD2如图,在四边形ABCD中,A+D=,ABC的平分线与BCD的平分线交于点P,则P=() A90°-B90°+ CD360°-3下列各运算中,计算正确的是( )ABCD4我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示这个数字是A6.75×103吨B67.5×103吨C6.75×104吨D6.75×105吨5若代数式有意义,则实数x的取值范围是()Ax=0Bx=3Cx0Dx36如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()ABCD7如图,小岛在港口P的北偏西60°方向,距港口56海里的A处,货船从港口P出发,沿北偏东45°方向匀速驶离港口,4小时后货船在小岛的正东方向,则货船的航行速度是( )A7海里/时B7海里/时C7海里/时D28海里/时8一次函数与反比例函数在同一个坐标系中的图象可能是()ABCD9有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()b0a; |b|a|; ab0; aba+bABCD10如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是( )AAB=ADBAC平分BCDCAB=BDDBECDEC二、填空题(共7小题,每小题3分,满分21分)11计算:(a2)2=_12计算5个数据的方差时,得s2(5)2+(8)2+(7)2+(4)2+(6)2,则的值为_13方程的解是_14如图,已知函数yx+2的图象与函数y(k0)的图象交于A、B两点,连接BO并延长交函数y(k0)的图象于点C,连接AC,若ABC的面积为1则k的值为_15在由乙猜甲刚才想的数字游戏中,把乙猜的数字记为b且,a,b是0,1,2,3四个数中的其中某一个,若|ab|1则称甲乙”心有灵犀”现任意找两个人玩这个游戏,得出他们”心有灵犀”的概率为_16一只蚂蚁从数轴上一点 A出发,爬了7 个单位长度到了+1,则点 A 所表示的数是_17如图,在RtABC中,C=90°,AB=5,BC=3,点P、Q分别在边BC、AC上,PQAB,把PCQ绕点P旋转得到PDE(点C、Q分别与点D、E对应),点D落在线段PQ上,若AD平分BAC,则CP的长为_三、解答题(共7小题,满分69分)18(10分)如图,一位测量人员,要测量池塘的宽度 的长,他过 两点画两条相交于点 的射线,在射线上取两点 ,使 ,若测得 米,他能求出 之间的距离吗?若能,请你帮他算出来;若不能,请你帮他设计一个可行方案19(5分)图 1 和图 2 中,优弧纸片所在O 的半径为 2,AB2 ,点 P为优弧上一点(点 P 不与 A,B 重合),将图形沿 BP 折叠,得到点 A 的对称点 A发现:(1)点 O 到弦 AB 的距离是 ,当 BP 经过点 O 时,ABA ;(2)当 BA与O 相切时,如图 2,求折痕的长拓展:把上图中的优弧纸片沿直径 MN 剪裁,得到半圆形纸片,点 P(不与点 M, N 重合)为半圆上一点,将圆形沿 NP 折叠,分别得到点 M,O 的对称点 A, O,设MNP(1)当15°时,过点 A作 ACMN,如图 3,判断 AC 与半圆 O 的位置关系,并说明理由;(2)如图 4,当 °时,NA与半圆 O 相切,当 °时,点 O落在上 (3)当线段 NO与半圆 O 只有一个公共点 N 时,直接写出的取值范围20(8分)如图,在ABC中,ABAC,以AB为直径作O交BC于点D过点D作EFAC,垂足为E,且交AB的延长线于点F求证:EF是O的切线;已知AB4,AE1求BF的长21(10分)已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题:(1)请用t分别表示A、B的路程sA、sB;(2)在A出发后几小时,两人相距15km?22(10分)(阅读)如图1,在等腰ABC中,AB=AC,AC边上的高为h,M是底边BC上的任意一点,点M到腰AB、AC的距离分别为h1,h1连接AM (思考)在上述问题中,h1,h1与h的数量关系为: (探究)如图1,当点M在BC延长线上时,h1、h1、h之间有怎样的数量关系式?并说明理由(应用)如图3,在平面直角坐标系中有两条直线l1:,l1:y=3x+3,若l1上的一点M到l1的距离是1,请运用上述结论求出点M的坐标23(12分)“低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门抽样调查了某单位员工上下班的交通方式,绘制了如下统计图:(1)填空:样本中的总人数为 ;开私家车的人数m= ;扇形统计图中“骑自行车”所在扇形的圆心角为 度;(2)补全条形统计图;(3)该单位共有2000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车若步行,坐公交车上下班的人数保持不变,问原来开私家车的人中至少有多少人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数?24(14分)如图,的直角顶点P在第四象限,顶点A、B分别落在反比例函数图象的两支上,且轴于点C,轴于点D,AB分别与x轴,y轴相交于点F和已知点B的坐标为填空:_;证明:;当四边形ABCD的面积和的面积相等时,求点P的坐标参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形.【详解】解:根据中心对称图形的定义可知只有B选项是中心对称图形,故选择B.【点睛】本题考察了中心对称图形的含义.2、C【解析】试题分析:四边形ABCD中,ABC+BCD=360°(A+D)=360°,PB和PC分别为ABC、BCD的平分线,PBC+PCB=(ABC+BCD)=(360°)=180°,则P=180°(PBC+PCB)=180°(180°)=故选C考点:1.多边形内角与外角2.三角形内角和定理3、D【解析】利用同底数幂的除法法则、同底数幂的乘法法则、幂的乘方法则以及完全平方公式即可判断【详解】A、,该选项错误;B、,该选项错误;C、,该选项错误;D、,该选项正确;故选:D【点睛】本题考查了同底数幂的乘法、除法法则,幂的乘方法则以及完全平方公式,正确理解法则是关键4、C【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值在确定n的值时,看该数是大于或等于1还是小于1当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,n为它第一个有效数字前0的个数(含小数点前的1个0)67500一共5位,从而67 500=6.75×2故选C5、D【解析】分析:根据分式有意义的条件进行求解即可.详解:由题意得,x30,解得,x3,故选D点睛:此题考查了分式有意义的条件.注意:分式有意义的条件事分母不等于零,分式无意义的条件是分母等于零.6、D【解析】根据俯视图中每列正方形的个数,再画出从正面的,左面看得到的图形:几何体的左视图是:故选D.7、A【解析】试题解析:设货船的航行速度为海里/时,小时后货船在点处,作于点.由题意海里,海里,在中, 所以在中, 所以所以解得:故选A.8、B【解析】当k0时,一次函数y=kxk的图象过一、三、四象限,反比例函数y=的图象在一、三象限,A、C不符合题意,B符合题意;当k0时,一次函数y=kxk的图象过一、二、四象限,反比例函数y=的图象在二、四象限,D不符合题意故选B9、B【解析】分析:本题是考察数轴上的点的大小的关系.解析:由图知,b<0<a,故正确,因为b点到原点的距离远,所以|b|>|a|,故错误,因为b<0<a,所以ab<0,故错误,由知a-b>a+b,所以正确.故选B.10、C【解析】解:AC垂直平分BD,AB=AD,BC=CD,AC平分BCD,平分BCD,BE=DEBCE=DCE在RtBCE和RtDCE中,BE=DE,BC=DC,RtBCERtDCE(HL)选项ABD都一定成立故选C二、填空题(共7小题,每小题3分,满分21分)11、a1【解析】根据幂的乘方法则进行计算即可.【详解】 故答案为【点睛】考查幂的乘方,掌握运算法则是解题的关键.12、1【解析】根据平均数的定义计算即可【详解】解: 故答案为1【点睛】本题主要考查平均数的求法,掌握平均数的公式是解题的关键.13、x=-2【解析】方程两边同时平方得:,解得:,检验:(1)当x=3时,方程左边=-3,右边=3,左边右边,因此3不是原方程的解;(2)当x=-2时,方程左边=2,右边=2,左边=右边,因此-2是方程的解.原方程的解为:x=-2.故答案为:-2.点睛:(1)根号下含有未知数的方程叫无理方程,解无理方程的基本思想是化“无理方程”为“有理方程”;(2)解无理方程和解分式方程相似,求得未知数的值之后要检验,看所得结果是原方程的解还是增根.14、3【解析】连接OA根据反比例函数的对称性可得OB=OC,那么SOAB=SOAC=SABC=2求出直线y=x+2与y轴交点D的坐标设A(a,a+2),B(b,b+2),则C(-b,-b-2),根据SOAB=2,得出a-b=2 根据SOAC=2,得出-a-b=2 ,与联立,求出a、b的值,即可求解【详解】如图,连接OA由题意,可得OB=OC,SOAB=SOAC=SABC=2设直线y=x+2与y轴交于点D,则D(0,2),设A(a,a+2),B(b,b+2),则C(-b,-b-2),SOAB=×2×(a-b)=2,a-b=2 过A点作AMx轴于点M,过C点作CNx轴于点N,则SOAM=SOCN=k,SOAC=SOAM+S梯形AMNC-SOCN=S梯形AMNC=2,(-b-2+a+2)(-b-a)=2,将代入,得-a-b=2 ,+,得-2b=6,b=-3,-,得2a=2,a=1,A(1,3),k=1×3=3故答案为3【点睛】本题考查了反比例函数与一次函数的交点问题,反比例函数的性质,反比例函数图象上点的坐标特征,三角形的面积,待定系数法求函数的解析式等知识,综合性较强,难度适中根据反比例函数的对称性得出OB=OC是解题的突破口15、【解析】利用P(A)=,进行计算概率.【详解】从0,1,2,3四个数中任取两个则|ab|1的情况有0,0;1,1;2,2;3,3;0,1;1,0;1,2;2,1;2,3;3,2;共10种情况,甲乙出现的结果共有4×4=16,故出他们”心有灵犀”的概率为故答案是:.【点睛】本题考查了概率的简单计算能力,是一道列举法求概率的问题,属于基础题,可以直接应用求概率的公式16、6 或 8【解析】试题解析:当往右移动时,此时点A 表示的点为6,当往左移动时,此时点A 表示的点为8.17、1【解析】连接AD,根据PQAB可知ADQ=DAB,再由点D在BAC的平分线上,得出DAQ=DAB,故ADQ=DAQ,AQ=DQ在RtCPQ中根据勾股定理可知,AQ=11-4x,故可得出x的值,进而得出结论.【详解】连接AD,PQAB,ADQ=DAB,点D在BAC的平分线上,DAQ=DAB,ADQ=DAQ,AQ=DQ,在RtABC中,AB=5,BC=3,AC=4,PQAB,CPQCBA,CP:CQ=BC:AC=3:4,设PC=3x,CQ=4x,在RtCPQ中,PQ=5x,PD=PC=3x,DQ=1x,AQ=4-4x,4-4x=1x,解得x=,CP=3x=1;故答案为:1【点睛】本题考查平行线的性质、旋转变换、等腰三角形的判定、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型三、解答题(共7小题,满分69分)18、可以求出A、B之间的距离为111.6米.【解析】根据,(对顶角相等),即可判定,根据相似三角形的性质得到,即可求解.【详解】解:,(对顶角相等),解得米所以,可以求出、之间的距离为米【点睛】考查相似三角形的应用,掌握相似三角形的判定方法和性质是解题的关键.19、发现:(1)1,60°;(2)2;拓展:(1)相切,理由详见解析;(2)45°;30°;(3)0°30°或 45°90°【解析】发现:(1)利用垂径定理和勾股定理即可求出点O到AB的距离;利用锐角三角函数的定义及轴对称性就可求出ABA(2)根据切线的性质得到OBA=90°,从而得到ABA=120°,就可求出ABP,进而求出OBP=30°过点O作OGBP,垂足为G,容易求出OG、BG的长,根据垂径定理就可求出折痕的长拓展:(1)过A'、O作A'HMN于点H,ODA'C于点D用含30°角的直角三角形的性质可得OD=A'H=A'N=MN=2可判定AC与半圆相切;(2)当NA与半圆相切时,可知ONAN,则可知=45°,当O在时,连接MO,则可知NO=MN,可求得MNO=60°,可求得=30°;(3)根据点A的位置不同得到线段NO与半圆O只有一个公共点N时的取值范围是0°30°或45°90°【详解】发现:(1)过点O作OHAB,垂足为H,如图1所示,O的半径为2,AB=2,OH=在BOH中,OH=1,BO=2ABO=30°图形沿BP折叠,得到点A的对称点AOBA=ABO=30°ABA=60°(2)过点O作OGBP,垂足为G,如图2所示BA与O相切,OBABOBA=90°OBH=30°,ABA=120°ABP=ABP=60°OBP=30°OG=OB=1BG=OGBP,BG=PG=BP=2折痕的长为2拓展:(1)相切分别过A'、O作A'HMN于点H,ODA'C于点D如图3所示,A'CMN四边形A'HOD是矩形A'H=O=15°A'NH=30OD=A'H=A'N=MN=2A'C与半圆(2)当NA与半圆O相切时,则ONNA,ONA=2=90°,=45当O在上时,连接MO,则可知NO=MN,OMN=0°MNO=60°,=30°,故答案为:45°;30°(3)点P,M不重合,0,由(2)可知当增大到30°时,点O在半圆上,当0°30°时点O在半圆内,线段NO与半圆只有一个公共点B;当增大到45°时NA与半圆相切,即线段NO与半圆只有一个公共点B当继续增大时,点P逐渐靠近点N,但是点P,N不重合,90°,当45°90°线段BO与半圆只有一个公共点B综上所述0°30°或45°90°【点睛】本题考查了切线的性质、垂径定理、勾股定理、三角函数的定义、30°角所对的直角边等于斜边的一半、翻折问题等知识,正确的作出辅助线是解题的关键20、(1)证明见解析;(2)2.【解析】(1)作辅助线,根据等腰三角形三线合一得BDCD,根据三角形的中位线可得ODAC,所以得ODEF,从而得结论;(2)证明ODFAEF,列比例式可得结论【详解】(1)证明:连接OD,AD,AB是O的直径,ADBC,ABAC,BDCD,OAOB,ODAC,EFAC,ODEF,EF是O的切线;(2)解:ODAE,ODFAEF,AB4,AE1,BF2【点睛】本题主要考查的是圆的综合应用,解答本题主要应用了圆周角定理、相似三角形的性质和判定,圆的切线的判定,掌握本题的辅助线的作法是解题的关键21、(1)sA45t45,sB20t;(2)在A出发后小时或小时,两人相距15km【解析】(1)根据函数图象中的数据可以分别求得s与t的函数关系式;(2)根据(1)中的函数解析式可以解答本题【详解】解:(1)设sA与t的函数关系式为sAkt+b,得,即sA与t的函数关系式为sA45t45, 设sB与t的函数关系式为sBat,603a,得a20,即sB与t的函数关系式为sB20t;(2)|45t4520t|15,解得,t1,t2,即在A出发后小时或小时,两人相距15km【点睛】本题主要考查一次函数的应用,涉及到直线上点的坐标与方程,利用待定系数法求一次函数的解析式是解题的关键22、【思考】h1+h1=h;【探究】h1h1=h理由见解析;【应用】所求点M的坐标为(,1)或(,4)【解析】思考:根据等腰三角形的性质,把代数式化简可得.探究:当点M在BC延长线上时,连接,可得,化简可得.应用:先证明,ABC为等腰三角形,即可运用上面得到的性质,再分点M在BC边上和在CB延长线上两种情况讨论,第一种有1+My=OB,第二种为My1=OB,解得的纵坐标,再分别代入的解析式即可求解.【详解】思考即h1+h1=h探究h1h1=h 理由连接, h1h1=h 应用在中,令x=0得y=3;令y=0得x=4,则:A(4,0),B(0,3) 同理求得C(1,0),又因为AC=5,所以AB=AC,即ABC为等腰三角形当点M在BC边上时,由h1+h1=h得:1+My=OB,My=31=1,把它代入y=3x+3中求得:,; 当点M在CB延长线上时,由h1h1=h得:My1=OB,My=3+1=4,把它代入y=3x+3中求得:,综上,所求点M的坐标为或【点睛】本题结合三角形的面积和等腰三角形的性质考查了新性质的推理与证明,熟练掌握三角形的性质,结合图形层层推进是解答的关键.23、(1)80,20,72;(2)16,补图见解析;(3)原来开私家车的人中至少有50人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数【解析】试题分析:(1)用乘公交车的人数除以所占的百分比,计算即可求出总人数,再用总人数乘以开私家车的所占的百分比求出m,用360°乘以骑自行车的所占的百分比计算即可得解:样本中的总人数为:36÷45%=80人;开私家车的人数m=80×25%=20;扇形统计图中“骑自行车”的圆心角为.(2)求出骑自行车的人数,然后补全统计图即可.(3)设原来开私家车的人中有x人改为骑自行车,表示出改后骑自行车的人数和开私家车的人数,列式不等式,求解即可试题解析:解:(1)80,20,72.(2)骑自行车的人数为:80×20%=16人,补全统计图如图所示;(3)设原来开私家车的人中有x人改为骑自行车,由题意得,解得x50.答:原来开私家车的人中至少有50人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数考点:1.条形统计图;2.扇形统计图;3.频数、频率和总量的关系;4.一元一次不等式的应用24、(1)1;(2)证明见解析;(1)点坐标为【解析】由点B的坐标,利用反比例函数图象上点的坐标特征可求出k值;设A点坐标为,则D点坐标为,P点坐标为,C点坐标为,进而可得出PB,PC,PA,PD的长度,由四条线段的长度可得出,结合可得出,由相似三角形的性质可得出,再利用“同位角相等,两直线平行”可证出;由四边形ABCD的面积和的面积相等可得出,利用三角形的面积公式可得出关于a的方程,解之取其负值,再将其代入P点的坐标中即可求出结论【详解】解:点在反比例函数的图象,故答案为:1证明:反比例函数解析式为,设A点坐标为轴于点C,轴于点D,点坐标为,P点坐标为,C点坐标为,又,解:四边形ABCD的面积和的面积相等,整理得:,解得:,舍去,点坐标为【点睛】本题考查了反比例函数图象上点的坐标特征、相似三角形的判定与性质、平行线的判定以及三角形的面积,解题关键是:根据点的坐标,利用反比例函数图象上点的坐标特征求出k值;利用相似三角形的判定定理找出;由三角形的面积公式,找出关于a的方程