2022-2023学年郴州市重点中学中考冲刺卷数学试题含解析.doc
-
资源ID:87068743
资源大小:944.50KB
全文页数:24页
- 资源格式: DOC
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022-2023学年郴州市重点中学中考冲刺卷数学试题含解析.doc
2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)12016年底安徽省已有13个市迈入“高铁时代”,现正在建设的“合安高铁”项目,计划总投资334亿元人民币.把334亿用科学记数法可表示为( )A0.334 B C D2据国土资源部数据显示,我国是全球“可燃冰”资源储量最多的国家之一,海、陆总储量约为39000000000吨油当量,将39000000000用科学记数法表示为()A3.9×1010B3.9×109C0.39×1011D39×1093把直线l:y=kx+b绕着原点旋转180°,再向左平移1个单位长度后,经过点A(-2,0)和点B(0,4),则直线l的表达式是( )Ay=2x+2By=2x-2Cy=-2x+2Dy=-2x-24下列计算,正确的是()Aa2a2=2a2Ba2+a2=a4C(a2)2=a4D(a+1)2=a2+15已知方程的两个解分别为、,则的值为()ABC7D36如图,在ABC中,ACB=90°,A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为()A5B6C7D87如果ab=5,那么代数式(2)的值是()ABC5D58已知:如图,在ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若AGC的周长为31cm,AB=20cm,则ABC的周长为()A31cmB41cmC51cmD61cm9如图,为了测量河对岸l1上两棵古树A、B之间的距离,某数学兴趣小组在河这边沿着与AB平行的直线l2上取C、D两点,测得ACB15°,ACD45°,若l1、l2之间的距离为50m,则A、B之间的距离为()A50mB25mC(50)mD(5025)m10在2016年泉州市初中体育中考中,随意抽取某校5位同学一分钟跳绳的次数分别为:158,160,154,158,170,则由这组数据得到的结论错误的是()A平均数为160B中位数为158C众数为158D方差为20.311如图是我国南海地区图,图中的点分别代表三亚市,永兴岛,黄岩岛,渚碧礁,弹丸礁和曾母暗沙,该地区图上两个点之间距离最短的是()A三亚永兴岛B永兴岛黄岩岛C黄岩岛弹丸礁D渚碧礁曾母暗山12如图,矩形ABCD中,AB=3,AD=4,连接BD,DBC的角平分线BE交DC于点E,现把BCE绕点B逆时针旋转,记旋转后的BCE为BCE当线段BE和线段BC都与线段AD相交时,设交点分别为F,G若BFD为等腰三角形,则线段DG长为()ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13点A(x1,y1)、B(x1,y1)在二次函数y=x14x1的图象上,若当1x11,3x14时,则y1与y1的大小关系是y1_y1(用“”、“”、“=”填空)14如图所示,某办公大楼正前力有一根高度是15米的旗杆ED,从办公楼顶点A测得族杆顶端E的俯角是45°,旗杆底端D到大楼前梯坎底端C的距离DC是20米,梯坎坡长BC是13米,梯坎坡度i=1:2.4,则大楼AB的高度的为_米15布袋中装有2个红球和5个白球,它们除颜色外其它都相同如果从这个布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是 _16如图,在RtABC中,C=90°,AC=8,BC=1在边AB上取一点O,使BO=BC,以点O为旋转中心,把ABC逆时针旋转90°,得到ABC(点A、B、C的对应点分别是点A、B、C、),那么ABC与ABC的重叠部分的面积是_17在数学课上,老师提出如下问题:尺规作图:确定图1中所在圆的圆心已知:求作:所在圆的圆心曈曈的作法如下:如图2,(1)在上任意取一点,分别连接,;(2)分别作弦,的垂直平分线,两条垂直平分线交于点点就是所在圆的圆心老师说:“曈曈的作法正确”请你回答:曈曈的作图依据是_18函数y=中自变量x的取值范围是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分) “C919”大型客机首飞成功,激发了同学们对航空科技的兴趣,如图是某校航模兴趣小组获得的一张数据不完整的航模飞机机翼图纸,图中ABCD,AMBNED,AEDE,请根据图中数据,求出线段BE和CD的长(sin37°0.60,cos37°0.80,tan37°0.75,结果保留小数点后一位)20(6分)如图所示,在ABC中,AB=CB,以BC为直径的O交AC于点E,过点E作O的切线交AB于点F(1)求证:EFAB;(2)若AC=16,O的半径是5,求EF的长21(6分)路边路灯的灯柱垂直于地面,灯杆的长为2米,灯杆与灯柱成角,锥形灯罩的轴线与灯杆垂直,且灯罩轴线正好通过道路路面的中心线(在中心线上).已知点与点之间的距离为12米,求灯柱的高.(结果保留根号)22(8分) 截至2018年5月4日,中欧班列(郑州)去回程开行共计1191班,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在河南采购一批特色商品,经调查,用1600元采购A型商品的件数是用1000元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价少20元,已知A型商品的售价为160元,B型商品的售价为240元,已知该客商购进甲乙两种商品共200件,设其中甲种商品购进x件,该客商售完这200件商品的总利润为y元(1)求A、B型商品的进价;(2)该客商计划最多投入18000元用于购买这两种商品,则至少要购进多少件甲商品?若售完这些商品,则商场可获得的最大利润是多少元?(3)在(2)的基础上,实际进货时,生产厂家对甲种商品的出厂价下调a元(50a70)出售,且限定商场最多购进120件,若客商保持同种商品的售价不变,请你根据以上信息及(2)中的条件,设计出使该客商获得最大利润的进货方案23(8分)如图,M是平行四边形ABCD的对角线上的一点,射线AM与BC交于点F,与DC的延长线交于点H(1)求证:AM2MF.MH(2)若BC2BDDM,求证:AMBADC24(10分)已知,抛物线的顶点为,它与轴交于点,(点在点左侧)()求点、点的坐标;()将这个抛物线的图象沿轴翻折,得到一个新抛物线,这个新抛物线与直线交于点求证:点是这个新抛物线与直线的唯一交点;将新抛物线位于轴上方的部分记为,将图象以每秒个单位的速度向右平移,同时也将直线以每秒个单位的速度向上平移,记运动时间为,请直接写出图象与直线有公共点时运动时间的范围25(10分)我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如图两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有_人,扇形统计图中“了解”部分所对应扇形的圆心角为_°.(2)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为_人.(3)若从对校园安全知识达到“了解”程度的3个女生A、B、C和2个男生M、N中分别随机抽取1人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到女生A的概率.26(12分)如图,直线yx+2与反比例函数 (k0)的图象交于A(a,3),B(3,b)两点,过点A作ACx轴于点C,过点B作BDx轴于点D求a,b的值及反比例函数的解析式;若点P在直线yx+2上,且SACPSBDP,请求出此时点P的坐标;在x轴正半轴上是否存在点M,使得MAB为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由27(12分)如图,用细线悬挂一个小球,小球在竖直平面内的A、C两点间来回摆动,A点与地面距离AN=14cm,小球在最低点B时,与地面距离BM=5cm,AOB=66°,求细线OB的长度(参考数据:sin66°0.91,cos66°0.40,tan66°2.25)参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数解:334亿=3.34×1010“点睛”此题考查了科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值2、A【解析】用科学记数法表示较大的数时,一般形式为a×10n,其中1|a|10,n为整数,据此判断即可【详解】39000000000=3.9×1故选A【点睛】科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数3、B【解析】先利用待定系数法求出直线AB的解析式,再求出将直线AB向右平移1个单位长度后得到的解析式,然后将所得解析式绕着原点旋转180°即可得到直线l【详解】解:设直线AB的解析式为ymxnA(2,0),B(0,1), ,解得 ,直线AB的解析式为y2x1将直线AB向右平移1个单位长度后得到的解析式为y2(x1)1,即y2x2,再将y2x2绕着原点旋转180°后得到的解析式为y2x2,即y2x2,所以直线l的表达式是y2x2故选:B【点睛】本题考查了一次函数图象平移问题,掌握解析式“左加右减”的规律以及关于原点对称的规律是解题的关键4、C【解析】解:A.故错误;B. 故错误;C.正确;D.故选C【点睛】本题考查合并同类项,同底数幂相乘;幂的乘方,以及完全平方公式的计算,掌握运算法则正确计算是解题关键5、D【解析】由根与系数的关系得出x1x25,x1x22,将其代入x1x2x1x2中即可得出结论【详解】解:方程x25x20的两个解分别为x1,x2,x1x25,x1x22,x1x2x1x2521故选D【点睛】本题考查了根与系数的关系,解题的关键是根据根与系数的关系得出x1x25,x1x22本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系得出两根之和与两根之积是关键6、B【解析】试题分析:连接CD,在ABC中,ACB=90°,A=30°,BC=4,AB=2BC=1作法可知BC=CD=4,CE是线段BD的垂直平分线,CD是斜边AB的中线,BD=AD=4,BF=DF=2,AF=AD+DF=4+2=2故选B考点:作图基本作图;含30度角的直角三角形7、D【解析】【分析】先对括号内的进行通分,进行分式的加减法运算,然后再进行分式的乘除法运算,最后把a-b=5整体代入进行求解即可.【详解】(2)=a-b,当a-b=5时,原式=5,故选D.8、C【解析】DG是AB边的垂直平分线,GA=GB,AGC的周长=AG+AC+CG=AC+BC=31cm,又AB=20cm,ABC的周长=AC+BC+AB=51cm,故选C.9、C【解析】如图,过点A作AMDC于点M,过点B作BNDC于点N则AM=BN通过解直角ACM和BCN分别求得CM、CN的长度,则易得AB =MN=CMCN,即可得到结论【详解】如图,过点A作AMDC于点M,过点B作BNDC于点N则AB=MN,AM=BN在直角ACM中,ACM=45°,AM=50m,CM=AM=50m在直角BCN中,BCN=ACB+ACD=60°,BN=50m,CN=(m),MN=CMCN=50(m)则AB=MN=(50)m故选C【点睛】本题考查了解直角三角形的应用解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题10、D【解析】解:A平均数为(158+160+154+158+170)÷5=160,正确,故本选项不符合题意;B按照从小到大的顺序排列为154,158,158,160,170,位于中间位置的数为158,故中位数为158,正确,故本选项不符合题意;C数据158出现了2次,次数最多,故众数为158,正确,故本选项不符合题意;D这组数据的方差是S2=(154160)2+2×(158160)2+(160160)2+(170160)2=28.8,错误,故本选项符合题意故选D点睛:本题考查了众数、平均数、中位数及方差,解题的关键是掌握它们的定义,难度不大11、A【解析】根据两点直线距离最短可在图中看出三亚-永兴岛之间距离最短.【详解】由图可得,两个点之间距离最短的是三亚-永兴岛.故答案选A.【点睛】本题考查的知识点是两点之间直线距离最短,解题的关键是熟练的掌握两点之间直线距离最短.12、A【解析】先在RtABD中利用勾股定理求出BD=5,在RtABF中利用勾股定理求出BF=,则AF=4-=再过G作GHBF,交BD于H,证明GH=GD,BH=GH,设DG=GH=BH=x,则FG=FD-GD=-x,HD=5-x,由GHFB,得出=,即可求解【详解】解:在RtABD中,A=90°,AB=3,AD=4,BD=5,在RtABF中,A=90°,AB=3,AF=4-DF=4-BF,BF2=32+(4-BF)2,解得BF=,AF=4-=过G作GHBF,交BD于H,FBD=GHD,BGH=FBG,FB=FD,FBD=FDB,FDB=GHD,GH=GD,FBG=EBC=DBC=ADB=FBD,又FBG=BGH,FBG=GBH,BH=GH,设DG=GH=BH=x,则FG=FD-GD=-x,HD=5-x,GHFB, =,即=,解得x=故选A【点睛】本题考查了旋转的性质,矩形的性质,等腰三角形的性质,勾股定理,平行线分线段成比例定理,准确作出辅助线是解题关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小【详解】由二次函数y=x1-4x-1=(x-1)1-5可知,其图象开口向上,且对称轴为x=1,1x11,3x14,A点横坐标离对称轴的距离小于B点横坐标离对称轴的距离,y1y1故答案为14、42【解析】延长AB交DC于H,作EGAB于G,则GH=DE=15米,EG=DH,设BH=x米,则CH=2.4x米,在RtBCH中,BC=13米,由勾股定理得出方程,解方程求出BH=5米,CH=12米,得出BG、EG的长度,证明AEG是等腰直角三角形,得出AG=EG=12+20=32(米),即可得出大楼AB的高度【详解】延长AB交DC于H,作EGAB于G,如图所示:则GH=DE=15米,EG=DH, 梯坎坡度i=1:2.4,BH:CH=1:2.4,设BH=x米,则CH=2.4x米,在RtBCH中,BC=13米,由勾股定理得:x2+(2.4x)2=132,解得:x=5,BH=5米,CH=12米,BG=GH-BH=15-5=10(米),EG=DH=CH+CD=12+20=32(米),=45°,EAG=90°-45°=45°,AEG是等腰直角三角形,AG=EG=32(米),AB=AG+BG=32+10=42(米);故答案为42【点睛】本题考查了解直角三角形的应用-坡度、俯角问题;通过作辅助线运用勾股定理求出BH,得出EG是解决问题的关键15、【解析】试题解析:一个布袋里装有2个红球和5个白球,摸出一个球摸到红球的概率为:考点:概率公式16、【解析】先求得OD,AE,DE的值,再利用S四边形ODEF=SAOF-SADE即可.【详解】如图,OA=OA=4,则OD=OA=3,OD=3AD=1,可得DE=,AE =S四边形ODEF=SAOF-SADE=×3×4-××=.故答案为.【点睛】本题考查的知识点是三角形的旋转,解题的关键是熟练的掌握三角形的旋转.17、线段垂直平分线上的点到线段两端点的距离相等圆的定义(到定点的距离等于定长的点的轨迹是圆)【解析】(1)在上任意取一点,分别连接,;(2)分别作弦,的垂直平分线,两条垂直平分线交于点点就是所在圆的圆心【详解】解:根据线段的垂直平分线的性质定理可知:,所以点是所在圆的圆心(理由线段垂直平分线上的点到线段两端点的距离相等圆的定义(到定点的距离等于定长的点的轨迹是圆):)故答案为线段垂直平分线上的点到线段两端点的距离相等圆的定义(到定点的距离等于定长的点的轨迹是圆)【点睛】本题考查作图复杂作图、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型18、x且x1【解析】试题解析:根据题意得: 解得:x且x1.故答案为:x且x1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、线段BE的长约等于18.8cm,线段CD的长约等于10.8cm【解析】试题分析:在RtBED中可先求得BE的长,过C作CFAE于点F,则可求得AF的长,从而可求得EF的长,即可求得CD的长试题解析:BNED,NBD=BDE=37°,AEDE,E=90°,BE=DEtanBDE18.75(cm),如图,过C作AE的垂线,垂足为F,FCA=CAM=45°,AF=FC=25cm,CDAE,四边形CDEF为矩形,CD=EF,AE=AB+EB=35.75(cm),CD=EF=AE-AF10.8(cm),答:线段BE的长约等于18.8cm,线段CD的长约等于10.8cm【点睛】本题考查了解直角三角形的应用,正确地添加辅助线构造直角三角形是解题的关键.20、(1)证明见解析;(2) 4.8.【解析】(1)连结OE,根据等腰三角形的性质可得OEC=OCA、A=OCA,即可得A=OEC,由同位角相等,两直线平行即可判定OEAB,又因EF是O的切线,根据切线的性质可得EFOE,由此即可证得EFAB;(2)连结BE,根据直径所对的圆周角为直角可得,BEC=90°,再由等腰三角形三线合一的性质求得AE=EC =8,在RtBEC中,根据勾股定理求的BE=6,再由ABE的面积=BEC的面积,根据直角三角形面积的两种表示法可得8×6=10×EF,由此即可求得EF=4.8.【详解】(1)证明:连结OEOE=OC,OEC=OCA,AB=CB,A=OCA,A=OEC,OEAB,EF是O的切线,EFOE,EFAB(2)连结BEBC是O的直径,BEC=90°, 又AB=CB,AC=16,AE=EC=AC=8,AB=CB=2BO=10,BE=,又ABE的面积=BEC的面积,即8×6=10×EF,EF=4.8.【点睛】本题考查了切线的性质定理、圆周角定理、等腰三角形的性质与判定、勾股定理及直角三角形的两种面积求法等知识点,熟练运算这些知识是解决问题的关键.21、【解析】设灯柱BC的长为h米,过点A作AHCD于点H,过点B作BEAH于点E,构造出矩形BCHE,RtAEB,然后解直角三角形求解【详解】解:设灯柱的长为米,过点作于点过点做于点四边形为矩形,又在中,又在中,解得,(米)灯柱的高为米.22、(1)80,100;(2)100件,22000元;(3)答案见解析.【解析】(1)先设A型商品的进价为a元/件,求得B型商品的进价为(a+20)元/件,由题意得等式 ,解得a80,再检验a是否符合条件,得到答案.(2)先设购机A型商品x件,则由题意可得到等式80x+100(200x)18000,解得,x100;再设获得的利润为w元,由题意可得w(16080)x+(240100)(200x)60x+28000,当x=100时代入w60x+28000,从而得答案.(3)设获得的利润为w元,由题意可得w(a60)x+28000,分类讨论:当50a60时,当a60时,当60a70时,各个阶段的利润,得出最大值.【详解】解:(1)设A型商品的进价为a元/件,则B型商品的进价为(a+20)元/件, ,解得,a80,经检验,a80是原分式方程的解,a+20100,答:A、B型商品的进价分别为80元/件、100元/件;(2)设购机A型商品x件,80x+100(200x)18000,解得,x100,设获得的利润为w元,w(16080)x+(240100)(200x)60x+28000,当x100时,w取得最大值,此时w22000,答:该客商计划最多投入18000元用于购买这两种商品,则至少要购进100件甲商品,若售完这些商品,则商场可获得的最大利润是22000元;(3)w(16080+a)x+(240100)(200x)(a60)x+28000,50a70,当50a60时,a600,y随x的增大而减小,则甲100件,乙100件时利润最大;当a60时,w28000,此时甲乙只要是满足条件的整数即可;当60a70时,a600,y随x的增大而增大,则甲120件,乙80件时利润最大【点睛】本题考察一次函数的应用及一次不等式的应用,属于中档题,难度不大.23、(1)证明见解析;(2)证明见解析.【解析】(1)由于ADBC,ABCD,通过三角形相似,找到分别于,都相等的比,把比例式变形为等积式,问题得证(2)推出,再结合,可证得答案.【详解】(1)证明:四边形是平行四边形, ,即(2)四边形是平行四边形,又,即,又,, , ,.【点睛】本题考查的知识点是相似三角形的判定与性质,解题的关键是熟练的掌握相似三角形的判定与性质.24、(1)B(3,0),C(1,0);(2)见解析;t6.【解析】(1)根据抛物线的顶点坐标列方程,即可求得抛物线的解析式,令y0,即可得解;(2)根据翻折的性质写出翻折后的抛物线的解析式,与直线方程联立,求得交点坐标即可;当t0时,直线与抛物线只有一个交点N(3,6)(相切),此时直线与G无交点;第一个交点出现时,直线过点C(1 t,0),代入直线解析式:y4x6t,解得t;最后一个交点是B(3t,0),代入y4x6t,解得t6,所以t6.【详解】(1)因为抛物线的顶点为M(1,2),所以对称轴为x1,可得:,解得:a,c,所以抛物线解析式为yx2x,令y0,解得x1或x3,所以B(3,0),C(1,0);(2)翻折后的解析式为yx2x,与直线y4x6联立可得:x23x0,解得:x1x23,所以该一元二次方程只有一个根,所以点N(3,6)是唯一的交点;t6.【点睛】本题主要考查了图形运动,解本题的要点在于熟知一元二次方程的相关知识点.25、(1)60,30;(2)300;(3) 【解析】(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“了解”部分所对应扇形的圆心角;(2)利用样本估计总体的方法,即可求得答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽到女生A的情况,再利用概率公式求解即可求得答案【详解】解:(1)了解很少的有30人,占50%,接受问卷调查的学生共有:30÷50%=60(人);了解部分的人数为60(15+30+10)=5,扇形统计图中“了解”部分所对应扇形的圆心角为:×360°=30°;故答案为60,30;(2)根据题意得:900×=300(人),则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人,故答案为300;(3)画树状图如下:所有等可能的情况有6种,其中抽到女生A的情况有2种,所以P(抽到女生A)=【点睛】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图用到的知识点为:概率=所求情况数与总情况数之比26、(1)y;(2)P(0,2)或(3,5);(3)M(,0)或(,0)【解析】(1)利用点在直线上,将点的坐标代入直线解析式中求解即可求出a,b,最后用待定系数法求出反比例函数解析式;(2)设出点P坐标,用三角形的面积公式求出SACP×3×|n1|,SBDP×1×|3n|,进而建立方程求解即可得出结论;(3)设出点M坐标,表示出MA2(m1)29,MB2(m3)21,AB232,再三种情况建立方程求解即可得出结论【详解】(1)直线yx2与反比例函数y(k0)的图象交于A(a,3),B(3,b)两点,a23,32b,a1,b1,A(1,3),B(3,1),点A(1,3)在反比例函数y上,k1×33,反比例函数解析式为y; (2)设点P(n,n2),A(1,3),C(1,0),B(3,1),D(3,0),SACPAC×|xPxA|×3×|n1|,SBDPBD×|xBxP|×1×|3n|,SACPSBDP,×3×|n1|×1×|3n|,n0或n3,P(0,2)或(3,5);(3)设M(m,0)(m0),A(1,3),B(3,1),MA2(m1)29,MB2(m3)21,AB2(31)2(13)232,MAB是等腰三角形,当MAMB时,(m1)29(m3)21,m0,(舍)当MAAB时,(m1)2932,m1或m1(舍),M(1,0)当MBAB时,(m3)2132,m3或m3(舍),M(3,0)即:满足条件的M(1,0)或(3,0)【点睛】此题是反比例函数综合题,主要考查了待定系数法,三角形的面积的求法,等腰三角形的性质,用方程的思想解决问题是解本题的关键27、15cm【解析】试题分析:设细线OB的长度为xcm,作ADOB于D,证出四边形ANMD是矩形,得出AN=DM=14cm,求出OD=x-9,在RtAOD中,由三角函数得出方程,解方程即可试题解析:设细线OB的长度为xcm,作ADOB于D,如图所示:ADM=90°,ANM=DMN=90°,四边形ANMD是矩形,AN=DM=14cm,DB=145=9cm,OD=x9,在RtAOD中,cosAOD=,cos66°=0.40,解得:x=15,OB=15cm