2022-2023学年河南省新乡市卫辉市重点名校中考数学五模试卷含解析.doc
2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(共10小题,每小题3分,共30分)1如图,直线y=3x+6与x,y轴分别交于点A,B,以OB为底边在y轴右侧作等腰OBC,将点C向左平移5个单位,使其对应点C恰好落在直线AB上,则点C的坐标为()A(3,3)B(4,3)C(1,3)D(3,4)2关于x的不等式组无解,那么m的取值范围为( )Am1Bm<1C1<m0D1m<03下列由左边到右边的变形,属于因式分解的是()A(x1)(x1)x21Bx22x1x(x2)1Ca2b2(ab)(ab)Dmxmynxnym(xy)n(xy)4是两个连续整数,若,则分别是( ).A2,3B3,2C3,4D6,85下列运算中,正确的是()A(a3)2=a5B(x)2÷x=xCa3(a)2=a5D(2x2)3=8x66关于反比例函数y=,下列说法中错误的是()A它的图象是双曲线B它的图象在第一、三象限Cy的值随x的值增大而减小D若点(a,b)在它的图象上,则点(b,a)也在它的图象上7“射击运动员射击一次,命中靶心”这个事件是( )A确定事件 B必然事件 C不可能事件 D不确定事件8二次函数(a0)的图象如图所示,则下列命题中正确的是()Aa bcB一次函数y=ax +c的图象不经第四象限Cm(am+b)+ba(m是任意实数)D3b+2c09周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园图中描述了小丽路上的情景,下列说法中错误的是()A小丽从家到达公园共用时间20分钟B公园离小丽家的距离为2000米C小丽在便利店时间为15分钟D便利店离小丽家的距离为1000米10如图,已知点E在正方形ABCD内,满足AEB=90°,AE=6,BE=8,则阴影部分的面积是()A48B60C76D80二、填空题(本大题共6个小题,每小题3分,共18分)11一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是_.12如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是_13如图,在平面直角坐标系中,的顶点、在坐标轴上,点的坐标是(2,2)将ABC沿轴向左平移得到A1B1C1,点落在函数y=-如果此时四边形的面积等于,那么点的坐标是_14三个小伙伴各出资a元,共同购买了价格为b元的一个篮球,还剩下一点钱,则剩余金额为_元(用含a、b的代数式表示)15七巧板是我们祖先的一项创造,被誉为“东方魔板”,如图所示是一副七巧板,若已知SBIC=1,据七巧板制作过程的认识,求出平行四边形EFGH_16如图所示,在ABC中,C=90°,CAB=50°.按以下步骤作图:以点A为圆心,小于AC的长为半径画弧,分别交AB,AC于点E,F;分别以点E,F为圆心,大于EF的长为半径画弧,两弧相交于点G;作射线AG交BC边于点D则ADC的度数为. 三、解答题(共8题,共72分)17(8分)为了保护视力,学校开展了全校性的视力保健活动,活动前,随机抽取部分学生,检查他们的视力,结果如图所示(数据包括左端点不包括右端点,精确到0.1);活动后,再次检查这部分学生的视力,结果如表所示 分组频数4.0x4.224.2x4.434.4x4.654.6x4.884.8x5.0175.0x5.25(1)求活动所抽取的学生人数;(2)若视力达到4.8及以上为达标,计算活动前该校学生的视力达标率;(3)请选择适当的统计量,从两个不同的角度评价视力保健活动的效果18(8分)已知一次函数yx+1与抛物线yx2+bx+c交A(m,9),B(0,1)两点,点C在抛物线上且横坐标为1(1)写出抛物线的函数表达式;(2)判断ABC的形状,并证明你的结论;(3)平面内是否存在点Q在直线AB、BC、AC距离相等,如果存在,请直接写出所有符合条件的Q的坐标,如果不存在,说说你的理由19(8分)P是O内一点,过点P作O的任意一条弦AB,我们把PAPB的值称为点P关于O的“幂值”(1)O的半径为6,OP=1 如图1,若点P恰为弦AB的中点,则点P关于O的“幂值”为_;判断当弦AB的位置改变时,点P关于O的“幂值”是否为定值,若是定值,证明你的结论;若不是定值,求点P关于0的“幂值”的取值范围; (2)若O的半径为r,OP=d,请参考(1)的思路,用含r、d的式子表示点P关于O的“幂值”或“幂值”的取值范围_; (3)在平面直角坐标系xOy中,C(1,0),C的半径为3,若在直线y=x+b上存在点P,使得点P关于C的“幂值”为6,请直接写出b的取值范围_20(8分)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D(1)求二次函数的表达式; (2)在y轴上是否存在一点P,使PBC为等腰三角形?若存在请求出点P的坐标; (3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,MNB面积最大,试求出最大面积21(8分)如图,在RtABC中,过点C的直线MNAB,D为AB边上一点,过点D作DEBC,交直线MN于E,垂足为F,连接CD、BE.求证:CE=AD;当D在AB中点时,四边形BECD是什么特殊四边形?说明理由;若D为AB中点,则当=_时,四边形BECD是正方形.22(10分)在平面直角坐标系xOy中,抛物线与轴交于点A,顶点为点B,点C与点A关于抛物线的对称轴对称(1)求直线BC的解析式;(2)点D在抛物线上,且点D的横坐标为1将抛物线在点A,D之间的部分(包含点A,D)记为图象G,若图象G向下平移()个单位后与直线BC只有一个公共点,求的取值范围23(12分)如图,AB为O直径,C为O上一点,点D是的中点,DEAC于E,DFAB于F(1)判断DE与O的位置关系,并证明你的结论;(2)若OF=4,求AC的长度24 (1)解方程组(2)若点是平面直角坐标系中坐标轴上的点,( 1 )中的解分别为点的横、纵坐标,求的最小值及取得最小值时点的坐标.参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】令x=0,y=6,B(0,6),等腰OBC,点C在线段OB的垂直平分线上,设C(a,3),则C '(a5,3),3=3(a5)+6,解得a=4,C(4,3).故选B.点睛:掌握等腰三角形的性质、函数图像的平移.2、A【解析】【分析】先求出每一个不等式的解集,然后再根据不等式组无解得到有关m的不等式,就可以求出m的取值范围了.【详解】,解不等式得:x<m,解不等式得:x>-1,由于原不等式组无解,所以m-1,故选A.【点睛】本题考查了一元一次不等式组无解问题,熟知一元一次不等式组解集的确定方法“大大取大,小小取小,大小小大中间找,大大小小无处找”是解题的关键.3、C【解析】因式分解是把一个多项式化为几个整式的积的形式,据此进行解答即可.【详解】解:A、B、D三个选项均不是把一个多项式化为几个整式的积的形式,故都不是因式分解,只有C选项符合因式分解的定义,故选择C.【点睛】本题考查了因式分解的定义,牢记定义是解题关键.4、A【解析】根据,可得答案【详解】根据题意,可知,可得a=2,b=1故选A【点睛】本题考查了估算无理数的大小,明确是解题关键5、D【解析】根据同底数幂的除法、乘法的运算方法,幂的乘方与积的乘方的运算方法,以及单项式乘单项式的方法,逐项判定即可【详解】(a3)2=a6,选项A不符合题意;(-x)2÷x=x,选项B不符合题意;a3(-a)2=a5,选项C不符合题意;(-2x2)3=-8x6,选项D符合题意故选D【点睛】此题主要考查了同底数幂的除法、乘法的运算方法,幂的乘方与积的乘方的运算方法,以及单项式乘单项式的方法,要熟练掌握6、C【解析】根据反比例函数y=的图象上点的坐标特征,以及该函数的图象的性质进行分析、解答【详解】A反比例函数的图像是双曲线,正确;Bk=20,图象位于一、三象限,正确;C在每一象限内,y的值随x的增大而减小,错误;Dab=ba,若点(a,b)在它的图像上,则点(b,a)也在它的图像上,故正确故选C【点睛】本题主要考查反比例函数的性质注意:反比例函数的增减性只指在同一象限内7、D【解析】试题分析:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件,故选D考点:随机事件8、D【解析】解:A由二次函数的图象开口向上可得a0,由抛物线与y轴交于x轴下方可得c0,由x=1,得出=1,故b0,b=2a,则bac,故此选项错误;Ba0,c0,一次函数y=ax+c的图象经一、三、四象限,故此选项错误;C当x=1时,y最小,即abc最小,故abcam2+bm+c,即m(am+b)+ba,故此选项错误;D由图象可知x=1,a+b+c0,对称轴x=1,当x=1,y0,当x=3时,y0,即9a3b+c0+得10a2b+2c0,b=2a,得出3b+2c0,故选项正确;故选D点睛:此题主要考查了图象与二次函数系数之间的关系,二次函数与方程之间的转换,会利用特殊值代入法求得特殊的式子,如:y=a+b+c,然后根据图象判断其值9、C【解析】解:A小丽从家到达公园共用时间20分钟,正确;B公园离小丽家的距离为2000米,正确;C小丽在便利店时间为1510=5分钟,错误;D便利店离小丽家的距离为1000米,正确故选C10、C【解析】试题解析:AEB=90°,AE=6,BE=8,AB=S阴影部分=S正方形ABCD-SRtABE=102-=100-24=76.故选C.考点:勾股定理.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到白球的情况,再利用概率公式即可求得答案【详解】画树状图得: 共有12种等可能的结果,两次都摸到白球的有2种情况,两次都摸到白球的概率是:=.故答案为:.【点睛】本题考查用树状图法求概率,解题的关键是掌握用树状图法求概率.12、1【解析】画出图形,设菱形的边长为x,根据勾股定理求出周长即可【详解】当两张纸条如图所示放置时,菱形周长最大,设这时菱形的边长为xcm,在RtABC中,由勾股定理:x2=(8-x)2+22,解得:x=,4x=1,即菱形的最大周长为1cm故答案是:1【点睛】解答关键是怎样放置纸条使得到的菱形的周长最大,然后根据图形列方程13、 (-5, )【解析】分析:依据点B的坐标是(2,2),BB2AA2,可得点B2的纵坐标为2,再根据点B2落在函数y=的图象上,即可得到BB2=AA2=5=CC2,依据四边形AA2C2C的面积等于,可得OC=,进而得到点C2的坐标是(5,)详解:如图,点B的坐标是(2,2),BB2AA2,点B2的纵坐标为2又点B2落在函数y=的图象上,当y=2时,x=3,BB2=AA2=5=CC2又四边形AA2C2C的面积等于,AA2×OC=,OC=,点C2的坐标是(5,) 故答案为(5,) 点睛:本题主要考查了反比例函数的综合题的知识,解答本题的关键是熟练掌握反比例函数的性质以及平移的性质在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度14、(3ab)【解析】解:由题意可得,剩余金额为:(3a-b)元,故答案为:(3a-b)点睛:本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式15、1【解析】根据七巧板的性质可得BI=IC=CH=HE,因为SBIC=1,BIC=90°,可求得BI=IC=,BC=1,在求得点G到EF的距离为 sin45°,根据平行四边形的面积即可求解.【详解】由七巧板性质可知,BI=IC=CH=HE又SBIC=1,BIC=90°,BIIC=1,BI=IC=,BC=1,EF=BC=1,FG=EH=BI=,点G到EF的距离为:,平行四边形EFGH的面积=EF=1×=1故答案为1【点睛】本题考查了七巧板的性质、等腰直角三角形的性质及平行四边形的面积公式,熟知七巧板的性质是解决问题的关键.16、65°【解析】根据已知条件中的作图步骤知,AG是CAB的平分线,根据角平分线的性质解答即可【详解】根据已知条件中的作图步骤知,AG是CAB的平分线,CAB=50°,CAD=25°;在ADC中,C=90°,CAD=25°,ADC=65°(直角三角形中的两个锐角互余);故答案是:65°三、解答题(共8题,共72分)17、(1)所抽取的学生人数为40人(2)37.5%(3)视力x4.4之间活动前有9人,活动后只有5人,人数明显减少活动前合格率37.5%,活动后合格率55%,说明视力保健活动的效果比较好【解析】【分析】(1)求出频数之和即可;(2)根据合格率=合格人数÷总人数×100%即可得解;(3)从两个不同的角度分析即可,答案不唯一.【详解】(1)频数之和=3+6+7+9+10+5=40,所抽取的学生人数为40人;(2)活动前该校学生的视力达标率=×100%=37.5%;(3)视力x4.4之间活动前有9人,活动后只有5人,人数明显减少;活动前合格率37.5%,活动后合格率55%,说明视力保健活动的效果比较好【点睛】本题考查了频数分布直方图、用样本估计总体等知识,熟知频数、合格率等相关概念是解题的关键.18、(1)yx27x+1;(2)ABC为直角三角形理由见解析;(3)符合条件的Q的坐标为(4,1),(24,1),(0,7),(0,13)【解析】(1)先利用一次函数解析式得到A(8,9),然后利用待定系数法求抛物线解析式;(2)先利用抛物线解析式确定C(1,5),作AMy轴于M,CNy轴于N,如图,证明ABM和BNC都是等腰直角三角形得到MBA45°,NBC45°,AB8 ,BN1,从而得到ABC90°,所以ABC为直角三角形;(3)利用勾股定理计算出AC10 ,根据直角三角形内切圆半径的计算公式得到RtABC的内切圆的半径2 ,设ABC的内心为I,过A作AI的垂线交直线BI于P,交y轴于Q,AI交y轴于G,如图,则AI、BI为角平分线,BIy轴,PQ为ABC的外角平分线,易得y轴为ABC的外角平分线,根据角平分线的性质可判断点P、I、Q、G到直线AB、BC、AC距离相等,由于BI×24,则I(4,1),接着利用待定系数法求出直线AI的解析式为y2x7,直线AP的解析式为yx+13,然后分别求出P、Q、G的坐标即可【详解】解:(1)把A(m,9)代入yx+1得m+19,解得m8,则A(8,9),把A(8,9),B(0,1)代入yx2+bx+c得,解得,抛物线解析式为yx27x+1;故答案为yx27x+1;(2)ABC为直角三角形理由如下:当x1时,yx27x+13142+15,则C(1,5),作AMy轴于M,CNy轴于N,如图,B(0,1),A(8,9),C(1,5),BMAM8,BNCN1,ABM和BNC都是等腰直角三角形,MBA45°,NBC45°,AB8,BN1,ABC90°,ABC为直角三角形;(3)AB8,BN1,AC10,RtABC的内切圆的半径,设ABC的内心为I,过A作AI的垂线交直线BI于P,交y轴于Q,AI交y轴于G,如图,I为ABC的内心,AI、BI为角平分线,BIy轴,而AIPQ,PQ为ABC的外角平分线,易得y轴为ABC的外角平分线,点I、P、Q、G为ABC的内角平分线或外角平分线的交点,它们到直线AB、BC、AC距离相等,BI×24,而BIy轴,I(4,1),设直线AI的解析式为ykx+n,则,解得,直线AI的解析式为y2x7,当x0时,y2x77,则G(0,7);设直线AP的解析式为yx+p,把A(8,9)代入得4+n9,解得n13,直线AP的解析式为yx+13,当y1时,x+131,则P(24,1)当x0时,yx+1313,则Q(0,13),综上所述,符合条件的Q的坐标为(4,1),(24,1),(0,7),(0,13)【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、角平分线的性质和三角形内心的性质;会利用待定系数法求函数解析式;理解坐标与图形性质是解题的关键19、(1)20;当弦AB的位置改变时,点P关于O的“幂值”为定值,证明见解析;(2)点P关于O的“幂值”为r2d2;(3)3b.【解析】【详解】(1)如图1所示:连接OA、OB、OP由等腰三角形的三线合一的性质得到PBO为直角三角形,然后依据勾股定理可求得PB的长,然后依据幂值的定义求解即可;过点P作O的弦ABOP,连接AA、BB先证明APABPB,依据相似三角形的性质得到PAPB=PAPB从而得出结论;(2)连接OP、过点P作ABOP,交圆O与A、B两点由等腰三角形三线合一的性质可知AP=PB,然后在RtAPO中,依据勾股定理可知AP2=OA2-OP2,然后将d、r代入可得到问题的答案;(3)过点C作CPAB,先求得OP的解析式,然后由直线AB和OP的解析式,得到点P的坐标,然后由题意圆的幂值为6,半径为1可求得d的值,再结合两点间的距离公式可得到关于b的方程,从而可求得b的极值,据此即可确定出b的取值范围【详解】(1)如图1所示:连接OA、OB、OP,OA=OB,P为AB的中点,OPAB,在PBO中,由勾股定理得:PB=2,PA=PB=2,O的“幂值”=2×2=20,故答案为:20;当弦AB的位置改变时,点P关于O的“幂值”为定值,证明如下:如图,AB为O中过点P的任意一条弦,且不与OP垂直,过点P作O的弦ABOP,连接AA、BB,在O中,AAP=BBP,APA=BPB,APABPB,PAPB=PAPB=20,当弦AB的位置改变时,点P关于O的“幂值”为定值;(2)如图3所示;连接OP、过点P作ABOP,交圆O与A、B两点,AO=OB,POAB,AP=PB,点P关于O的“幂值”=APPB=PA2,在RtAPO中,AP2=OA2OP2=r2d2,关于O的“幂值”=r2d2,故答案为:点P关于O的“幂值”为r2d2;(3)如图1所示:过点C作CPAB,CPAB,AB的解析式为y=x+b,直线CP的解析式为y=x+联立AB与CP,得,点P的坐标为(b,+b),点P关于C的“幂值”为6,r2d2=6,d2=3,即(b)2+(+b)2=3,整理得:b2+2b9=0,解得b=3或b=,b的取值范围是3b,故答案为:3b.【点睛】本题综合性质较强,考查了新定义题,解答过程中涉及到了幂值的定义、勾股定理、等腰三角形的性质、相似三角形的性质和判定、一次函数的交点问题、两点间的距离公式等,依据两点间的距离公式列出关于b的方程,从而求得b的极值是解题的关键20、(1)二次函数的表达式为:y=x24x+3;(2)点P的坐标为:(0,3+3)或(0,33)或(0,-3)或(0,0);(3)当点M出发1秒到达D点时,MNB面积最大,最大面积是1此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处【解析】(1)把A(1,0)和C(0,3)代入y=x2+bx+c得方程组,解方程组即可得二次函数的表达式;(2)先求出点B的坐标,再根据勾股定理求得BC的长,当PBC为等腰三角形时分三种情况进行讨论:CP=CB;BP=BC;PB=PC;分别根据这三种情况求出点P的坐标;(3)设AM=t则DN=2t,由AB=2,得BM=2t,SMNB=×(2t)×2t=t2+2t,把解析式化为顶点式,根据二次函数的性质即可得MNB最大面积;此时点M在D点,点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处【详解】解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,解得:b=4,c=3,二次函数的表达式为:y=x24x+3;(2)令y=0,则x24x+3=0,解得:x=1或x=3,B(3,0),BC=3,点P在y轴上,当PBC为等腰三角形时分三种情况进行讨论:如图1,当CP=CB时,PC=3,OP=OC+PC=3+3或OP=PCOC=33P1(0,3+3),P2(0,33);当PB=PC时,OP=OB=3,P3(0,-3);当BP=BC时,OC=OB=3此时P与O重合,P4(0,0);综上所述,点P的坐标为:(0,3+3)或(0,33)或(3,0)或(0,0);(3)如图2,设AM=t,由AB=2,得BM=2t,则DN=2t,SMNB=×(2t)×2t=t2+2t=(t1)2+1,当点M出发1秒到达D点时,MNB面积最大,最大面积是1此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处21、(1)详见解析;(2)菱形;(3)当A=45°,四边形BECD是正方形【解析】(1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;(2)求出四边形BECD是平行四边形,求出CD=BD,根据菱形的判定推出即可;(3)求出CDB=90°,再根据正方形的判定推出即可【详解】(1)DEBC,DFP=90°,ACB=90°,DFB=ACB,DE/AC,MN/AB,四边形ADEC为平行四边形,CE=AD;(2)菱形,理由如下:在直角三角形ABC中,D为AB中点,BD=AD,CE=AD,BD=CE,MN/AB,BECD是平行四边形,ACB=90°,D是AB中点,BD=CD,(斜边中线等于斜边一半)四边形BECD是菱形;(3)若D为AB中点,则当A=45°时,四边形BECD是正方形,理由:A=45°,ACB=90°,ABC=45°,四边形BECD是菱形,DC=DB,DBC=DCB=45°,CDB=90°,四边形BECD是菱形,四边形BECD是正方形,故答案为45°.【点睛】本题考查了平行四边形的判定与性质,菱形的判定、正方形的判定,直角三角形斜边中线的性质等,综合性较强,熟练掌握和灵活运用相关知识是解题的关键.22、(1)(2)【解析】试题分析:(1)首先根据抛物线求出与轴交于点A,顶点为点B的坐标,然后求出点A关于抛物线的对称轴对称点C的坐标,设设直线BC的解析式为代入点B,点C的坐标,然后解方程组即可;( 2)求出点D、E、F的坐标,设点A平移后的对应点为点,点D平移后的对应点为点当图象G向下平移至点与点E重合时, 点在直线BC上方,此时t=1;当图象G向下平移至点与点F重合时,点在直线BC下方,此时t=2从而得出.试题解析:解:(1)抛物线与轴交于点A,点A的坐标为(0,2) 1分,抛物线的对称轴为直线,顶点B的坐标为(1,) 2分又点C与点A关于抛物线的对称轴对称, 点C的坐标为(2,2),且点C在抛物线上设直线BC的解析式为直线BC经过点B(1,)和点C(2,2),解得直线BC的解析式为 2分(2)抛物线中,当时,点D的坐标为(1,6) 1分直线中,当时,当时,如图,点E的坐标为(0,1),点F的坐标为(1,2)设点A平移后的对应点为点,点D平移后的对应点为点当图象G向下平移至点与点E重合时, 点在直线BC上方,此时t=1; 5分当图象G向下平移至点与点F重合时,点在直线BC下方,此时t=2 6分结合图象可知,符合题意的t的取值范围是 7分考点:1.二次函数的性质;2.待定系数法求解析式;2.平移.23、(1)DE与O相切,证明见解析;(2)AC=8.【解析】(1)解:(1)DE与O相切证明:连接OD、AD,点D是的中点,=,DAO=DAC,OA=OD,DAO=ODA,DAC=ODA,ODAE,DEAC,DEOD,DE与O相切(2) 连接BC,根据ODF与ABC相似,求得AC的长AC=824、(1);(2)当坐标为时,取得最小值为.【解析】(1)用加减消元法解二元一次方程组;(2)利用(1)确定出B的坐标,进而得到AB取得最小值时A的坐标,以及AB的最小值【详解】解:(1)得:解得:把代入得,则方程组的解为(2 )由题意得:,当坐标为时,取得最小值为.【点睛】此题考查了二元一次方程组的解,以及坐标与图形性质,熟练掌握运算法则及数形结合思想解题是解本题的关键