欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022-2023学年广东省茂名市电白区中考数学最后冲刺模拟试卷含解析.doc

    • 资源ID:87068839       资源大小:880.50KB        全文页数:22页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022-2023学年广东省茂名市电白区中考数学最后冲刺模拟试卷含解析.doc

    2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为()A180元B200元C225元D259.2元2函数yax+b与ybx+a的图象在同一坐标系内的大致位置是()ABCD3如图,已知菱形ABCD的对角线ACBD的长分别为6cm、8cm,AEBC于点E,则AE的长是()ABCD4已知在四边形ABCD中,AD/BC,对角线AC、BD交于点O,且AC=BD,下列四个命题中真命题是( )A若AB=CD,则四边形ABCD一定是等腰梯形;B若DBC=ACB,则四边形ABCD一定是等腰梯形;C若,则四边形ABCD一定是矩形;D若ACBD且AO=OD,则四边形ABCD一定是正方形5如图,点E是四边形ABCD的边BC延长线上的一点,则下列条件中不能判定ADBE的是()ABCD6(2011黑河)已知二次函数y=ax2+bx+c(a0)的图象如图所示,现有下列结论:b24ac0 a0 b0 c0 9a+3b+c0,则其中结论正确的个数是()A、2个B、3个C、4个D、5个7一元一次不等式组的解集中,整数解的个数是( )A4 B5 C6 D78的值是ABCD9的绝对值是( )ABCD10一元二次方程x2+x2=0的根的情况是()A有两个不相等的实数根B有两个相等的实数根C只有一个实数根D没有实数根11共享单车已经成为城市公共交通的重要组成部分,某共享单车公司经过调查获得关于共享单车租用行驶时间的数据,并由此制定了新的收费标准:每次租用单车行驶a小时及以内,免费骑行;超过a小时后,每半小时收费1元,这样可保证不少于50%的骑行是免费的制定这一标准中的a的值时,参考的统计量是此次调查所得数据的()A平均数B中位数C众数D方差12一、单选题如图中的小正方形边长都相等,若MNPMEQ,则点Q可能是图中的()A点AB点BC点CD点D二、填空题:(本大题共6个小题,每小题4分,共24分)13已知点P(1,2)关于x轴的对称点为P,且P在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为 14已知函数y=|x2x2|,直线y=kx+4恰好与y=|x2x2|的图象只有三个交点,则k的值为_15反比例函数的图象经过点和,则 _ 16使得关于x的分式方程的解为负整数,且使得关于x的不等式组有且仅有5个整数解的所有k的和为_17已知O半径为1,A、B在O上,且,则AB所对的圆周角为_o.18已知|x|=3,y2=16,xy0,则xy=_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)在ABC中,A,B都是锐角,且sinA=,tanB=,AB=10,求ABC的面积.20(6分)如图,在大楼AB正前方有一斜坡CD,坡角DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.求坡底C点到大楼距离AC的值;求斜坡CD的长度.21(6分)先化简,再求值:,其中m是方程的根22(8分)如图矩形ABCD中AB=6,AD=4,点P为AB上一点,把矩形ABCD沿过P点的直线l折叠,使D点落在BC边上的D处,直线l与CD边交于Q点(1)在图(1)中利用无刻度的直尺和圆规作出直线l(保留作图痕迹,不写作法和理由)(2)若PDPD,求线段AP的长度;求sinQDD23(8分)某纺织厂生产的产品,原来每件出厂价为80元,成本为60元.由于在生产过程中平均每生产一件产品有0.5的污水排出,现在为了保护环境,需对污水净化处理后再排出.已知每处理1污水的费用为2元,且每月排污设备损耗为8000元.设现在该厂每月生产产品x件,每月纯利润y元:(1)求出y与x的函数关系式.(纯利润=总收入-总支出)(2)当y=106000时,求该厂在这个月中生产产品的件数.24(10分)如图,矩形中,对角线,相交于点,且,动点,分别从点,同时出发,运动速度均为lcm/s点沿运动,到点停止点沿运动,点到点停留4后继续运动,到点停止连接,设的面积为(这里规定:线段是面积为0的三角形),点的运动时间为 (1)求线段的长(用含的代数式表示);(2)求时,求与之间的函数解析式,并写出的取值范围;(3)当时,直接写出的取值范围25(10分)如图所示,某校九年级(3)班的一个学习小组进行测量小山高度的实践活动部分同学在山脚A点处测得山腰上一点D的仰角为30°,并测得AD的长度为180米另一部分同学在山顶B点处测得山脚A点的俯角为45°,山腰D点的俯角为60°,请你帮助他们计算出小山的高度BC(计算过程和结果都不取近似值)26(12分)某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=x+1求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;该产品第一年的利润为20万元,那么该产品第一年的售价是多少?第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件请计算该公司第二年的利润W2至少为多少万元27(12分)如图,在平面直角坐标系中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”已知点C的坐标为(0,),点M是抛物线C2:(0)的顶点(1)求A、B两点的坐标;(2)“蛋线”在第四象限上是否存在一点P,使得PBC的面积最大?若存在,求出PBC面积的最大值;若不存在,请说明理由;(3)当BDM为直角三角形时,求的值参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】设这种商品每件进价为x元,根据题中的等量关系列方程求解.【详解】设这种商品每件进价为x元,则根据题意可列方程270×0.8x0.2x,解得x180.故选A.【点睛】本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程.2、B【解析】根据a、b的符号进行判断,两函数图象能共存于同一坐标系的即为正确答案【详解】分四种情况:当a0,b0时,y=ax+b的图象经过第一、二、三象限,y=bx+a的图象经过第一、二、三象限,无选项符合;当a0,b0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,B选项符合;当a0,b0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,B选项符合;当a0,b0时,y=ax+b的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合故选B【点睛】此题考查一次函数的图象,关键是根据一次函数y=kx+b的图象有四种情况:当k0,b0,函数y=kx+b的图象经过第一、二、三象限;当k0,b0,函数y=kx+b的图象经过第一、三、四象限;当k0,b0时,函数y=kx+b的图象经过第一、二、四象限;当k0,b0时,函数y=kx+b的图象经过第二、三、四象限3、D【解析】根据菱形的性质得出BO、CO的长,在RTBOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度【详解】四边形ABCD是菱形,CO=AC=3,BO=BD=,AOBO,又,BC·AE=24,即故选D点睛:此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分4、C【解析】A、因为满足本选项条件的四边形ABCD有可能是矩形,因此A中命题不一定成立;B、因为满足本选项条件的四边形ABCD有可能是矩形,因此B中命题不一定成立;C、因为由结合AO+CO=AC=BD=BO+OD可证得AO=CO,BO=DO,由此即可证得此时四边形ABCD是矩形,因此C中命题一定成立;D、因为满足本选项条件的四边形ABCD有可能是等腰梯形,由此D中命题不一定成立.故选C.5、A【解析】利用平行线的判定方法判断即可得到结果【详解】1=2, ABCD,选项A符合题意; 3=4, ADBC,选项B不合题意; D=5, ADBC,选项C不合题意; B+BAD=180°, ADBC,选项D不合题意, 故选A【点睛】此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键6、B【解析】分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=1时二次函数的值的情况进行推理,进而对所得结论进行判断解答:解:根据图示知,二次函数与x轴有两个交点,所以=b2-4ac0;故正确;根据图示知,该函数图象的开口向上,a0;故正确;又对称轴x=-=1,0,b0;故本选项错误;该函数图象交于y轴的负半轴,c0;故本选项错误;根据抛物线的对称轴方程可知:(-1,0)关于对称轴的对称点是(3,0);当x=-1时,y0,所以当x=3时,也有y0,即9a+3b+c0;故正确所以三项正确故选B7、C【解析】试题分析:解不等式得:,解不等式,得:x5,不等式组的解集是,整数解为0,1,2,3,4,5,共6个,故选C考点:一元一次不等式组的整数解8、D【解析】根据特殊角三角函数值,可得答案【详解】解:,故选:D【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键9、C【解析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义即可解决【详解】在数轴上,点到原点的距离是,所以,的绝对值是,故选C【点睛】错因分析  容易题,失分原因:未掌握绝对值的概念.10、A【解析】=12-4×1×(-2)=9>0,方程有两个不相等的实数根.故选A.点睛:本题考查了一元二次方程ax2+bx+c=0(a0)的根的判别式=b24ac:当>0时,一元二次方程有两个不相等的实数根;当=0时,一元二次方程有两个相等的实数根;当<0时,一元二次方程没有实数根. 11、B【解析】根据需要保证不少于50%的骑行是免费的,可得此次调查的参考统计量是此次调查所得数据的中位数.【详解】因为需要保证不少于50%的骑行是免费的,所以制定这一标准中的a的值时,参考的统计量是此次调查所得数据的中位数,故选B【点睛】本题考查了中位数的知识,中位数是以它在所有标志值中所处的位置确定的全体单位标志值的代表值,不受分布数列的极大或极小值影响,从而在一定程度上提高了中位数对分布数列的代表性。12、D【解析】根据全等三角形的性质和已知图形得出即可【详解】解:MNPMEQ,点Q应是图中的D点,如图,故选:D【点睛】本题考查了全等三角形的性质,能熟记全等三角形的性质的内容是解此题的关键,注意:全等三角形的对应角相等,对应边相等二、填空题:(本大题共6个小题,每小题4分,共24分)13、y=1x+1【解析】由对称得到P(1,2),再代入解析式得到k的值,再根据平移得到新解析式.【详解】点P(1,2)关于x轴的对称点为P,P(1,2),P在直线y=kx+3上,2=k+3,解得:k=1,则y=1x+3,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为:y=1x+1故答案为y=1x+1考点:一次函数图象与几何变换14、11或1【解析】直线y=kx+4与抛物线y=-x1+x+1(-1x1)相切时,直线y=kx+4与y=|x1-x-1|的图象恰好有三个公共点,即-x1+x+1=kx+4有相等的实数解,利用根的判别式的意义可求出此时k的值,另外当y=kx+4过(1,0)时,也满足条件【详解】解:当y=0时,x1-x-1=0,解得x1=-1,x1=1,则抛物线y=x1-x-1与x轴的交点为(-1,0),(1,0),把抛物线y=x1-x-1图象x轴下方的部分沿x轴翻折到x轴上方,则翻折部分的抛物线解析式为y=-x1+x+1(-1x1),当直线y=kx+4与抛物线y=-x1+x+1(-1x1)相切时,直线y=kx+4与函数y=|x1-x-1|的图象恰好有三个公共点,即-x1+x+1=kx+4有相等的实数解,整理得x1+(k-1)x+1=0,=(k-1)1-8=0,解得k=1±1 ,所以k的值为1+1或1-1当k=1+1时,经检验,切点横坐标为x=-1不符合题意,舍去当y=kx+4过(1,0)时,k=-1,也满足条件,故答案为1-1或-1【点睛】本题考查了二次函数与几何变换:翻折变化不改变图形的大小,故|a|不变,利用顶点式即可求得翻折后的二次函数解析式;也可利用绝对值的意义,直接写出自变量在-1x1上时的解析式。15、-1【解析】先把点(1,6)代入反比例函数y=,求出k的值,进而可得出反比例函数的解析式,再把点(m,-3)代入即可得出m的值【详解】解:反比例函数y=的图象经过点(1,6),6=,解得k=6,反比例函数的解析式为y=点(m,-3)在此函数图象上上,-3=,解得m=-1故答案为-1【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键16、12.1【解析】依据分式方程=1的解为负整数,即可得到k,k1,再根据不等式组有1个整数解,即可得到0k4,进而得出k的值,从而可得符合题意的所有k的和【详解】解分式方程=1,可得x=1-2k,分式方程=1的解为负整数,1-2k0,k,又x-1,1-2k-1,k1,解不等式组,可得,不等式组有1个整数解,12,解得0k4,k4且k1,k的值为1.1或2或2.1或3或3.1,符合题意的所有k的和为12.1,故答案为12.1【点睛】本题考查了解一元一次不等式组、分式方程的解,解题时注意分式方程中的解要满足分母不为0的情况17、45º或135º【解析】试题解析:如图所示,OCAB,C为AB的中点,即在RtAOC中,OA=1, 根据勾股定理得:即OC=AC,AOC为等腰直角三角形,同理AOB与ADB都对,大角则弦AB所对的圆周角为或故答案为或18、±3【解析】分析:本题是绝对值、平方根和有理数减法的综合试题,同时本题还渗透了分类讨论的数学思想详解:因为|x|=1,所以x=±1因为y2=16,所以y=±2又因为xy0,所以x、y异号,当x=1时,y=-2,所以x-y=3;当x=-1时,y=2,所以x-y=-3故答案为:±3.点睛:本题是一道综合试题,本题中有分类的数学思想,求解时要注意分类讨论三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、【解析】根据已知得该三角形为直角三角形,利用三角函数公式求出各边的值,再利用三角形的面积公式求解【详解】如图:由已知可得:A=30°,B=60°,ABC为直角三角形,且C=90°,AB=10,BC=AB·sin30°=10=5,AC=AB·cos30°=10=,SABC=.【点睛】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形20、(1)坡底C点到大楼距离AC的值为20米;(2)斜坡CD的长度为80-120米.【解析】分析:(1)在直角三角形ABC中,利用锐角三角函数定义求出AC的长即可;(2)过点D作DFAB于点F,则四边形AEDF为矩形,得AF=DE,DF=AE.利用DF=AE=AC+CE求解即可.详解:(1)在直角ABC中,BAC=90°,BCA=60°,AB=60米,则AC=(米)答:坡底C点到大楼距离AC的值是20米(2)过点D作DFAB于点F,则四边形AEDF为矩形,AF=DE,DF=AE.设CD=x米,在RtCDE中,DE=x米,CE=x米在RtBDF中,BDF=45°,BF=DF=AB-AF=60-x(米)DF=AE=AC+CE,20+x=60-x解得:x=80-120(米)故斜坡CD的长度为(80-120)米.点睛:此题考查了解直角三角形-仰角俯角问题,坡度坡角问题,熟练掌握勾股定理是解本题的关键21、原式=m是方程的根,即,原式=【解析】试题分析:先通分计算括号里的,再计算括号外的,化为最简,由于m是方程的根,那么,可得的值,再把的值整体代入化简后的式子,计算即可试题解析:原式=.m是方程的根,即,原式=.考点:分式的化简求值;一元二次方程的解22、(1)见解析;(2) 【解析】(1)根据题意作出图形即可;(2)由(1)知,PD=PD,根据余角的性质得到ADP=BPD,根据全等三角形的性质得到AD=PB=4,得到AP=2;根据勾股定理得到PD=2,根据三角函数的定义即可得到结论【详解】(1)连接PD,以P为圆心,PD为半径画弧交BC于D,过P作DD的垂线交CD于Q,则直线PQ即为所求;(2)由(1)知,PD=PD,PDPD,DPD=90°,A=90°,ADP+APD=APD+BPD=90°,ADP=BPD,在ADP与BPD中,ADPBPD,AD=PB=4,AP= BDPB=ABAP=6AP=4,AP=2;PD=2,BD=2CD=BC- BD=4-2=2PD=PD,PDPD,DD=PD=2,PQ垂直平分DD,连接Q D则DQ= DQQDD=QDDsinQDD=sinQDD=【点睛】本题考查了作图-轴对称变换,矩形的性质,折叠的性质,全等三角形的判定和性质,等腰直角三角形的性质,正确的作出图形是解题的关键23、(1)y=19x-1(x>0且x是整数) (2)6000件【解析】(1)本题的等量关系是:纯利润=产品的出厂单价×产品的数量-产品的成本价×产品的数量-生产过程中的污水处理费-排污设备的损耗,可根据此等量关系来列出总利润与产品数量之间的函数关系式;(2)根据(1)中得出的式子,将y的值代入其中,求出x即可【详解】(1)依题意得:y=80x-60x-0.5x2-1,化简得:y=19x-1,所求的函数关系式为y=19x-1(x0且x是整数)(2)当y=106000时,代入得:106000=19x-1,解得x=6000,这个月该厂生产产品6000件【点睛】本题是利用一次函数的有关知识解答实际应用题,可根据题意找出等量关系,列出函数式进行求解24、(1)当0x1时,PD=1-x,当1x14时,PD=x-1(2)y=;(3)5x9【解析】(1)分点P在线段CD或在线段AD上两种情形分别求解即可(2)分三种情形:当5x1时,如图1中,根据y=SDPB,求解即可当1x9时,如图2中,根据y=SDPB,求解即可9x14时,如图3中,根据y=SAPQ+SABQ-SPAB计算即可(3)根据(2)中结论即可判断【详解】解:(1)当0x1时,PD=1-x,当1x14时,PD=x-1(2)当5x1时,如图1中,四边形ABCD是矩形,OD=OB,y=SDPB=×(1-x)6=(1-x)=12-x当1x9时,如图2中,y=SDPB=×(x-1)×1=2x-29x14时,如图3中,y=SAPQ+SABQ-SPAB=(14-x)(x-4)+×1×(tx-4)-×1×(14-x)=-x2+x-11综上所述,y=(3)由(2)可知:当5x9时,y=SBDP【点睛】本题属于四边形综合题,考查了矩形的性质,三角形的面积等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考常考题型25、米【解析】解:如图,过点D作DEAC于点E,作DFBC于点F,则有DEFC,DFECDEC=90°,四边形DECF是矩形,DE=FCHBA=BAC=45°,BAD=BACDAE=45°30°=15°又ABD=HBDHBA=60°45°=15°,ADB是等腰三角形AD=BD=180(米)在RtAED中,sinDAE=sin30°=,DE=180sin30°=180×=90(米),FC=90米,在RtBDF中,BDF=HBD=60°,sinBDF=sin60°=,BF=180sin60°=180×(米)BC=BF+FC=90+90=90(+1)(米)答:小山的高度BC为90(+1)米26、(1)W1=x2+32x2;(2)该产品第一年的售价是16元;(3)该公司第二年的利润W2至少为18万元【解析】(1)根据总利润=每件利润×销售量投资成本,列出式子即可;(2)构建方程即可解决问题;(3)根据题意求出自变量的取值范围,再根据二次函数,利用而学会设的性质即可解决问题.【详解】(1)W1=(x6)(x+1)80=x2+32x2(2)由题意:20=x2+32x2解得:x=16,答:该产品第一年的售价是16元(3)由题意:7x16,W2=(x5)(x+1)20=x2+31x150,7x16,x=7时,W2有最小值,最小值=18(万元),答:该公司第二年的利润W2至少为18万元【点睛】本题考查二次函数的应用、一元二次方程的应用等知识,解题的关键是理解题意,学会构建方程或函数解决问题.27、(1)A(,0)、B(3,0)(2)存在SPBC最大值为 (3)或时,BDM为直角三角形【解析】(1)在中令y=0,即可得到A、B两点的坐标(2)先用待定系数法得到抛物线C1的解析式,由SPBC = SPOC+ SBOPSBOC得到PBC面积的表达式,根据二次函数最值原理求出最大值(3)先表示出DM2,BD2,MB2,再分两种情况:BMD=90°时;BDM=90°时,讨论即可求得m的值【详解】解:(1)令y=0,则,m0,解得:,A(,0)、B(3,0)(2)存在理由如下:设抛物线C1的表达式为(),把C(0,)代入可得,1的表达式为:,即设P(p,), SPBC = SPOC+ SBOPSBOC=<0,当时,SPBC最大值为(3)由C2可知: B(3,0),D(0,),M(1,),BD2=,BM2=,DM2=MBD<90°, 讨论BMD=90°和BDM=90°两种情况:当BMD=90°时,BM2+ DM2= BD2,即=,解得:,(舍去)当BDM=90°时,BD2+ DM2= BM2,即=,解得:,(舍去) 综上所述,或时,BDM为直角三角形

    注意事项

    本文(2022-2023学年广东省茂名市电白区中考数学最后冲刺模拟试卷含解析.doc)为本站会员(茅****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开