2022-2023学年广西壮族自治区钦州市浦北县市级名校中考押题数学预测卷含解析.doc
2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1已知:如图,AD是ABC的角平分线,且AB:AC=3:2,则ABD与ACD的面积之比为()A3:2B9:4C2:3D4:92当x=1时,代数式x3+x+m的值是7,则当x=1时,这个代数式的值是()A7B3C1D73在一次体育测试中,10名女生完成仰卧起坐的个数如下:38,52,47,46,50,50,61,72,45,48,则这10名女生仰卧起坐个数不少于50个的频率为( )A0.3B0.4C0.5D0.64把一副三角板如图(1)放置,其中ACBDEC90°,A41°,D30°,斜边AB4,CD1把三角板DCE绕着点C顺时针旋转11°得到D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为( )ABCD45如图是由6个完全相同的小长方体组成的立体图形,这个立体图形的左视图是()ABCD6实数的相反数是( )ABCD7cos45°的值是( )A B C D18在平面直角坐标系中,有两条抛物线关于x轴对称,且他们的顶点相距10个单位长度,若其中一条抛物线的函数表达式为y=+6x+m,则m的值是 ( )A-4或-14B-4或14C4或-14D4或149下列几何体中,其三视图都是全等图形的是()A圆柱B圆锥C三棱锥D球10如图,在ABC中,AB=AC=5,BC=6,点M为BC的中点,MNAC于点N,则MN等于()A B C D二、填空题(本大题共6个小题,每小题3分,共18分)11已知线段AB10cm,C为线段AB的黄金分割点(ACBC),则BC_12如图,在RtAOB中,AOB90°,OA3,OB2,将RtAOB绕点O顺时针旋转90°后得RtFOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是_13新田为实现全县“脱贫摘帽”,2018年2月已统筹整合涉农资金235000000元,撬动800000000元金融资本参与全县脱贫攻坚工作,请将235000000用科学记数法表示为_14如果xy5,那么代数式的值是_15函数y= 中,自变量x的取值范围为_16一个多项式与的积为,那么这个多项式为 .三、解答题(共8题,共72分)17(8分)如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=1OD,OE=1OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE(1)求证:DEAG;(1)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转角(0°360°)得到正方形OEFG,如图1在旋转过程中,当OAG是直角时,求的度数;若正方形ABCD的边长为1,在旋转过程中,求AF长的最大值和此时的度数,直接写出结果不必说明理由18(8分)(5分)计算:19(8分)如图,直线y=x+2与抛物线y=ax2+bx+6(a0)相交于A()和B(4,m),点P是线段AB上异于A、B的动点,过点P作PCx轴于点D,交抛物线于点C(1)B点坐标为,并求抛物线的解析式;(2)求线段PC长的最大值;(3)若PAC为直角三角形,直接写出此时点P的坐标20(8分)学校实施新课程改革以来,学生的学习能力有了很大提高王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图1,2)请根据统计图解答下列问题:本次调查中,王老师一共调查了 名学生;将条形统计图补充完整;为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率21(8分)如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由(说明:的计算结果精确到0.1米,参考数据:1.41,1.73,2.24,2.45)22(10分)如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD80cm,宽AB48cm,小强身高166cm,下半身FG100cm,洗漱时下半身与地面成80°(FGK80°),身体前倾成125°(EFG125°),脚与洗漱台距离GC15cm(点D,C,G,K在同一直线上)(cos80°0.17,sin80°0.98,1.414)(1)此时小强头部E点与地面DK相距多少?(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?23(12分)先化简,后求值:a2a4a8÷a2+(a3)2,其中a=124如图,已知CD=CF,A=E=DCF=90°,求证:AD+EF=AE参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】试题解析:过点D作DEAB于E,DFAC于F.AD为BAC的平分线,DE=DF,又AB:AC=3:2, 故选A.点睛:角平分线上的点到角两边的距离相等.2、B【解析】因为当x=1时,代数式的值是7,所以1+1+m=7,所以m=5,当x=-1时,=-1-1+5=3,故选B3、C【解析】用仰卧起坐个数不少于10个的频数除以女生总人数10计算即可得解【详解】仰卧起坐个数不少于10个的有12、10、10、61、72共1个,所以,频率=0.1故选C【点睛】本题考查了频数与频率,频率=4、A【解析】试题分析:由题意易知:CAB=41°,ACD=30°若旋转角度为11°,则ACO=30°+11°=41°AOC=180°-ACO-CAO=90°在等腰RtABC中,AB=4,则AO=OC=2在RtAOD1中,OD1=CD1-OC=3,由勾股定理得:AD1=故选A.考点: 1.旋转;2.勾股定理.5、B【解析】根据题意找到从左面看得到的平面图形即可【详解】这个立体图形的左视图是,故选:B【点睛】本题考查了简单组合体的三视图,解题的关键是掌握左视图所看的位置6、D【解析】根据相反数的定义求解即可【详解】的相反数是-,故选D【点睛】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数7、C【解析】本题主要是特殊角的三角函数值的问题,求解本题的关键是熟悉特殊角的三角函数值.【详解】cos45°= .故选:C.【点睛】本题考查特殊角的三角函数值.8、D【解析】根据顶点公式求得已知抛物线的顶点坐标,然后根据轴对称的性质求得另一条抛物线的顶点,根据题意得出关于m的方程,解方程即可求得【详解】一条抛物线的函数表达式为y=x2+6x+m,这条抛物线的顶点为(-3,m-9),关于x轴对称的抛物线的顶点(-3,9-m),它们的顶点相距10个单位长度|m-9-(9-m)|=10,2m-18=±10,当2m-18=10时,m=1,当2m-18=-10时,m=4,m的值是4或1故选D【点睛】本题考查了二次函数图象与几何变换,解答本题的关键是掌握二次函数的顶点坐标公式,坐标和线段长度之间的转换,关于x轴对称的点和抛物线的关系9、D【解析】分析: 任意方向上的视图都是全等图形的几何体只有球,在任意方向上的视图都是圆,其他的几何体的视图都有不同的.详解:圆柱,圆锥,三棱锥,球中,三视图都是全等图形的几何体只有球,在任意方向上的视图都是圆,故选D.点睛: 本题考查简单几何体的三视图,本题解题的关键是看出各个图形的在任意方向上的视图.10、A【解析】连接AM,根据等腰三角形三线合一的性质得到AMBC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长【详解】解:连接AM,AB=AC,点M为BC中点,AMCM(三线合一),BM=CM,AB=AC=5,BC=6,BM=CM=3,在RtABM中,AB=5,BM=3,根据勾股定理得:AM= = =4,又SAMC=MNAC=AMMC,MN= = 故选A【点睛】综合运用等腰三角形的三线合一,勾股定理特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边二、填空题(本大题共6个小题,每小题3分,共18分)11、(15-5)【解析】试题解析:C为线段AB的黄金分割点(ACBC),AC=AB=AC=×10=5-5,BC=AB-AC=10-(5-5)=(15-5)cm考点:黄金分割12、8【解析】分析:如下图,过点D作DHAE于点H,由此可得DHE=AOB=90°,由旋转的性质易得DE=EF=AB,OE=BO=2,OF=AO=3,DEF=FEO+DEH=90°,ABO=FEO,结合ABO+BAO=90°可得BAO=DEH,从而可证得DEHBAO,即可得到DH=BO=2,再由勾股定理求得AB的长,即可由S阴影=S扇形AOF+SOEF+SADE-S扇形DEF即可求得阴影部分的面积.详解:如下图,过点D作DHAE于点H,DHE=AOB=90°,OA=3,OB=2,AB=,由旋转的性质结合已知条件易得:DE=EF=AB= ,OE=BO=2,OF=AO=3,DEF=FEO+DEH=90°,ABO=FEO,又ABO+BAO=90°,BAO=DEH,DEHBAO,DH=BO=2,S阴影=S扇形AOF+SOEF+SADE-S扇形DEF=.故答案为:.点睛:作出如图所示的辅助线,利用旋转的性质证得DEHBAO,由此得到DH=BO=2,从而将阴影部分的面积转化为:S阴影=S扇形AOF+SOEF+SADE-S扇形DEF来计算是解答本题的关键.13、2.35×1【解析】科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:将235000000用科学记数法表示为:2.35×1故答案为:2.35×1【点睛】本题考查科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值14、1【解析】先将分式化简,然后将x+y=1代入即可求出答案【详解】当xy1时,原式xy1,故答案为:1【点睛】本题考查分式的化简求值,解题的关键是利用运用分式的运算法则求解代数式.15、x1【解析】该函数是分式,分式有意义的条件是分母不等于0,故分母x-10,解得x的范围【详解】根据题意得:x10,解得:x1.故答案为x1.【点睛】本题考查了函数自变量的取值范围,解题的关键是熟练的掌握分式的意义.16、【解析】试题分析:依题意知=考点:整式运算点评:本题难度较低,主要考查学生对整式运算中多项式计算知识点的掌握。同底数幂相乘除,指数相加减。三、解答题(共8题,共72分)17、(1)见解析;(1)30°或150°,的长最大值为,此时【解析】(1)延长ED交AG于点H,易证AOGDOE,得到AGO=DEO,然后运用等量代换证明AHE=90°即可;(1)在旋转过程中,OAG成为直角有两种情况:由0°增大到90°过程中,当OAG=90°时,=30°,由90°增大到180°过程中,当OAG=90°时,=150°;当旋转到A、O、F在一条直线上时,AF的长最大,AF=AO+OF=+1,此时=315°【详解】(1)如图1,延长ED交AG于点H,点O是正方形ABCD两对角线的交点,OA=OD,OAOD,OG=OE,在AOG和DOE中,AOGDOE,AGO=DEO,AGO+GAO=90°,GAO+DEO=90°,AHE=90°,即DEAG;(1)在旋转过程中,OAG成为直角有两种情况:()由0°增大到90°过程中,当OAG=90°时,OA=OD=OG=OG,在RtOAG中,sinAGO=,AGO=30°,OAOD,OAAG,ODAG,DOG=AGO=30°,即=30°;()由90°增大到180°过程中,当OAG=90°时,同理可求BOG=30°,=180°30°=150°.综上所述,当OAG=90°时,=30°或150°.如图3,当旋转到A. O、F在一条直线上时,AF的长最大,正方形ABCD的边长为1,OA=OD=OC=OB=,OG=1OD,OG=OG=,OF=1,AF=AO+OF=+1,COE=45°,此时=315°.【点睛】本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,掌握正方形的四条边相等、四个角相等,旋转变换的性质是解题的关键,注意特殊角的三角函数值的应用18、【解析】试题分析:利用负整数指数幂,零指数幂、绝对值、特殊角的三角函数值的定义解答试题解析:原式=考点:1实数的运算;2零指数幂;3负整数指数幂;4特殊角的三角函数值19、(1)(4,6);y=1x18x+6(1);(3)点P的坐标为(3,5)或()【解析】(1)已知B(4,m)在直线y=x+1上,可求得m的值,抛物线图象上的A、B两点坐标,可将其代入抛物线的解析式中,通过联立方程组即可求得待定系数的值(1)要弄清PC的长,实际是直线AB与抛物线函数值的差可设出P点横坐标,根据直线AB和抛物线的解析式表示出P、C的纵坐标,进而得到关于PC与P点横坐标的函数关系式,根据函数的性质即可求出PC的最大值(3)根据顶点问题分情况讨论,若点P为直角顶点,此图形不存在,若点A为直角顶点,根据已知解析式与点坐标,可求出未知解析式,再联立抛物线的解析式,可求得C点的坐标;若点C为直角顶点,可根据点的对称性求出结论.【详解】解:(1)B(4,m)在直线y=x+1上,m=4+1=6,B(4,6),故答案为(4,6);A(,),B(4,6)在抛物线y=ax1+bx+6上,解得,抛物线的解析式为y=1x18x+6;(1)设动点P的坐标为(n,n+1),则C点的坐标为(n,1n18n+6),PC=(n+1)(1n18n+6),=1n1+9n4,=1(n)1+,PC0,当n=时,线段PC最大且为(3)PAC为直角三角形,i)若点P为直角顶点,则APC=90°由题意易知,PCy轴,APC=45°,因此这种情形不存在;ii)若点A为直角顶点,则PAC=90°如图1,过点A(,)作ANx轴于点N,则ON=,AN=过点A作AM直线AB,交x轴于点M,则由题意易知,AMN为等腰直角三角形,MN=AN=,OM=ON+MN=+=3,M(3,0)设直线AM的解析式为:y=kx+b,则:,解得,直线AM的解析式为:y=x+3 又抛物线的解析式为:y=1x18x+6 联立式,解得:或(与点A重合,舍去),C(3,0),即点C、M点重合当x=3时,y=x+1=5,P1(3,5);iii)若点C为直角顶点,则ACP=90°y=1x18x+6=1(x1)11,抛物线的对称轴为直线x=1如图1,作点A(,)关于对称轴x=1的对称点C,则点C在抛物线上,且C(,)当x=时,y=x+1=P1(,)点P1(3,5)、P1(,)均在线段AB上,综上所述,PAC为直角三角形时,点P的坐标为(3,5)或(,)【点睛】本题考查了二次函数的综合题,解题的关键是熟练的掌握二次函数的应用.20、(1)20;(2)作图见试题解析;(3)【解析】(1)由A类的学生数以及所占的百分比即可求得答案;(2)先求出C类的女生数、D类的男生数,继而可补全条形统计图;(3)首先根据题意列出表格,再利用表格求得所有等可能的结果与恰好选中一名男生和一名女生的情况,继而求得答案【详解】(1)根据题意得:王老师一共调查学生:(2+1)÷15%=20(名);故答案为20;(2)C类女生:20×25%2=3(名);D类男生:20×(115%50%25%)1=1(名);如图:(3)列表如下:A类中的两名男生分别记为A1和A2,男A1男A2女A男D男A1男D男A2男D女A男D女D男A1女D男A2女D女A女D共有6种等可能的结果,其中,一男一女的有3种,所以所选两位同学恰好是一位男生和一位女生的概率为:21、(1)5.6(2)货物MNQP应挪走,理由见解析【解析】(1)如图,作ADBC于点DRtABD中, AD=ABsin45°=4在RtACD中,ACD=30°AC=2AD=4 即新传送带AC的长度约为5.6米 (2)结论:货物MNQP应挪走 在RtABD中,BD=ABcos45°=4 在RtACD中,CD=ACcos30°= CB=CDBD=PC=PBCB 42.1=1.92 货物MNQP应挪走22、 (1) 小强的头部点E与地面DK的距离约为144.5 cm.(2) 他应向前9.5 cm.【解析】试题分析:(1)过点F作FNDK于N,过点E作EMFN于M求出MF、FN的值即可解决问题;(2)求出OH、PH的值即可判断;试题解析:解:(1)过点F作FNDK于N,过点E作EMFN于MEF+FG=166,FG=100,EF=66,FGK=80°,FN=100sin80°98,EFG=125°,EFM=180°125°10°=45°,FM=66cos45°=46.53,MN=FN+FM144.5,此时小强头部E点与地面DK相距约为144.5cm(2)过点E作EPAB于点P,延长OB交MN于HAB=48,O为AB中点,AO=BO=24,EM=66sin45°46.53,PH46.53,GN=100cos80°17,CG=15,OH=24+15+17=56,OP=OHPH=5646.53=9.479.5,他应向前9.5cm23、1【解析】先进行同底数幂的乘除以及幂的乘方运算,再合并同类项得到化简后的式子,将a的值代入化简后的式子计算即可.【详解】原式=a6a6+a6=a6,当a=1时,原式=1【点睛】本题主要考查同底数幂的乘除以及幂的乘方运算法则.24、证明见解析.【解析】易证DACCEF,即可得证.【详解】证明:DCF=E=90°,DCA+ECF=90°,CFE+ECF=90°,DCA=CFE,在DAC和CEF中:,DACCEF(AAS),AD=CE,AC=EF,AE=AD+EF【点睛】此题主要考查全等三角形的判定与性质,解题的关键是熟知全等三角形的判定与性质.