2022-2023学年海南省海口市美兰区重点名校中考冲刺卷数学试题含解析.doc
2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,以AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在AOB内部交于点E,过点E作射线OE,连接CD则下列说法错误的是A射线OE是AOB的平分线BCOD是等腰三角形CC、D两点关于OE所在直线对称DO、E两点关于CD所在直线对称2在刚刚结束的中考英语听力、口语测试中,某班口语成绩情况如图所示,则下列说法正确的是()A中位数是9B众数为16C平均分为7.78D方差为23已知两点都在反比例函数图象上,当时, ,则的取值范围是( )ABCD4如果一个正多边形内角和等于1080°,那么这个正多边形的每一个外角等于()ABCD54的绝对值是( )A4BC4D6如果关于x的一元二次方程k2x2-(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是( )Ak>Bk>且Ck<Dk且7下列关于x的方程中一定没有实数根的是( )ABCD8下列运算正确的是()A(2a)3=6a3B3a24a3=12a5C3a(2a)=6a3a2D2a3a2=2a9关于x的一元一次不等式2的解集为x4,则m的值为( )A14B7C2D210要使式子有意义,的取值范围是( )AB且C. 或D 且二、填空题(共7小题,每小题3分,满分21分)11同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率为 12等腰ABC的底边BC=8cm,腰长AB=5cm,一动点P在底边上从点B开始向点C以0.25cm/秒的速度运动,当点P运动到PA与腰垂直的位置时,点P运动的时间应为_秒13我们知道:四边形具有不稳定性.如图,在平面直角坐标系xOy中,矩形ABCD的边AB在x轴上,边AD长为5. 现固定边AB,“推”矩形使点D落在y轴的正半轴上(落点记为),相应地,点C的对应点的坐标为_.14定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点至多拐一次弯的路径长称为P,Q的“实际距离”如图,若,则P,Q的“实际距离”为5,即或环保低碳的共享单车,正式成为市民出行喜欢的交通工具设A,B两个小区的坐标分别为,若点表示单车停放点,且满足M到A,B的“实际距离”相等,则_15从2,1,1,2四个数中,随机抽取两个数相乘,积为大于4小于2的概率是_16如图,点E在正方形ABCD的外部,DCE=DEC,连接AE交CD于点F,CDE的平分线交EF于点G,AE=2DG若BC=8,则AF=_17如图,已知在平行四边形ABCD中,E是边AB的中点,F在边AD上,且AF:FD=2:1,如果=,=,那么=_三、解答题(共7小题,满分69分)18(10分)十八届五中全会出台了全面实施一对夫妇可生育两个孩子的政策,这是党中央站在中华民族长远发展的战略高度作出的促进人口长期均衡发展的重大举措. 二孩政策出台后,某家庭积极响应政府号召,准备生育两个小孩(假设生男生女机会均等,且与顺序无关)(1)该家庭生育两胎,假设每胎都生育一个小孩,求这两个小孩恰好都是女孩的概率;(2)该家庭生育两胎,假设第一胎生育一个小孩,且第二胎生育一对双胞胎,求这三个小孩中恰好是2女1男的概率19(5分)已知关于x的一元二次方程kx26x+10有两个不相等的实数根(1)求实数k的取值范围;(2)写出满足条件的k的最大整数值,并求此时方程的根20(8分)如图,已知在中,是的平分线(1)作一个使它经过两点,且圆心在边上;(不写作法,保留作图痕迹)(2)判断直线与的位置关系,并说明理由21(10分)第二十四届冬季奧林匹克运动会将于2022年2月4日至2月20日在北京举行,北京将成为历史上第一座既举办过夏奥会又举办过冬奥会的城市.某区举办了一次冬奥知识网上答题竞赛,甲、乙两校各有名学生参加活动,为了解这两所学校的成绩情况,进行了抽样调查,过程如下,请补充完整. 收集数据从甲、乙两校各随机抽取名学生,在这次竞赛中他们的成绩如下:甲:乙:整理、描述数据按如下分数段整理、描述这两组样本数据:学校人数成绩甲乙 (说明:优秀成绩为,良好成绩为合格成绩为.)分析数据两组样本数据的平均分、中位数、众数如下表所示:学校平均分中位数众数甲乙其中 .得出结论(1)小明同学说:“这次竞赛我得了分,在我们学校排名属中游略偏上!”由表中数据可知小明是 _校的学生;(填“甲”或“乙”)(2)张老师从乙校随机抽取-名学生的竞赛成绩,试估计这名学生的竞赛成绩为优秀的概率为_ ;(3)根据以上数据推断一所你认为竞赛成绩较好的学校,并说明理由: ;(至少从两个不同的角度说明推断的合理性)22(10分)某商场同时购进甲、乙两种商品共100件,其进价和售价如下表:商品名称甲乙进价(元/件)4090售价(元/件)60120设其中甲种商品购进x件,商场售完这100件商品的总利润为y元写出y关于x的函数关系式;该商场计划最多投入8000元用于购买这两种商品,至少要购进多少件甲商品?若销售完这些商品,则商场可获得的最大利润是多少元?23(12分)如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD80cm,宽AB48cm,小强身高166cm,下半身FG100cm,洗漱时下半身与地面成80°(FGK80°),身体前倾成125°(EFG125°),脚与洗漱台距离GC15cm(点D,C,G,K在同一直线上)(cos80°0.17,sin80°0.98,1.414)(1)此时小强头部E点与地面DK相距多少?(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?24(14分)计算:; 解方程:参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】试题分析:A、连接CE、DE,根据作图得到OC=OD,CE=DE在EOC与EOD中,OC=OD,CE=DE,OE=OE,EOCEOD(SSS)AOE=BOE,即射线OE是AOB的平分线,正确,不符合题意B、根据作图得到OC=OD,COD是等腰三角形,正确,不符合题意C、根据作图得到OC=OD,又射线OE平分AOB,OE是CD的垂直平分线C、D两点关于OE所在直线对称,正确,不符合题意D、根据作图不能得出CD平分OE,CD不是OE的平分线,O、E两点关于CD所在直线不对称,错误,符合题意故选D2、A【解析】根据中位数,众数,平均数,方差等知识即可判断;【详解】观察图象可知,共有50个学生,从低到高排列后,中位数是25位与26位的平均数,即为1故选A【点睛】本题考查中位数,众数,平均数,方差的定义,解题的关键是熟练掌握基本知识,属于中考常考题型3、B【解析】根据反比例函数的性质判断即可【详解】解:当x1x20时,y1y2,在每个象限y随x的增大而增大,k0,故选:B【点睛】本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的性质4、A【解析】首先设此多边形为n边形,根据题意得:180(n-2)=1080,即可求得n=8,再由多边形的外角和等于360°,即可求得答案【详解】设此多边形为n边形,根据题意得:180(n-2)=1080,解得:n=8,这个正多边形的每一个外角等于:360°÷8=45°故选A【点睛】此题考查了多边形的内角和与外角和的知识注意掌握多边形内角和定理:(n-2)180°,外角和等于360°5、A【解析】根据绝对值的概念计算即可.(绝对值是指一个数在坐标轴上所对应点到原点的距离叫做这个数的绝对值.)【详解】根据绝对值的概念可得-4的绝对值为4.【点睛】错因分析:容易题.选错的原因是对实数的相关概念没有掌握,与倒数、相反数的概念混淆.6、B【解析】在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有两个实数根下必须满足=b2-4ac1【详解】由题意知,k1,方程有两个不相等的实数根,所以1,=b2-4ac=(2k+1)2-4k2=4k+11因此可求得k且k1故选B【点睛】本题考查根据根的情况求参数,熟记判别式与根的关系是解题的关键.7、B【解析】根据根的判别式的概念,求出的正负即可解题.【详解】解: A. x2-x-1=0,=1+4=50,原方程有两个不相等的实数根,B. , =36-144=-1080,原方程没有实数根,C. , , =10,原方程有两个不相等的实数根,D. , =m2+80,原方程有两个不相等的实数根,故选B.【点睛】本题考查了根的判别式,属于简单题,熟悉根的判别式的概念是解题关键.8、B【解析】先根据同底数幂的乘法法则进行运算即可。【详解】A.;故本选项错误;B. 3a24a3=12a5; 故本选项正确;C.;故本选项错误;D. 不是同类项不能合并; 故本选项错误;故选B.【点睛】先根据同底数幂的乘法法则, 幂的乘方, 积的乘方, 合并同类项分别求出每个式子的值, 再判断即可.9、D【解析】解不等式得到xm+3,再列出关于m的不等式求解.【详解】1,m1x6,1xm6,xm+3,关于x的一元一次不等式1的解集为x4,m+3=4,解得m=1故选D考点:不等式的解集10、D【解析】根据二次根式和分式有意义的条件计算即可.【详解】解: 有意义,a+20且a0,解得a-2且a0.故本题答案为:D.【点睛】二次根式和分式有意义的条件是本题的考点,二次根式有意义的条件是被开方数大于等于0,分式有意义的条件是分母不为0.二、填空题(共7小题,每小题3分,满分21分)11、【解析】试题分析:首先列表,然后根据表格求得所有等可能的结果与两个骰子的点数相同的情况,再根据概率公式求解即可解:列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)一共有36种等可能的结果,两个骰子的点数相同的有6种情况,两个骰子的点数相同的概率为:=故答案为考点:列表法与树状图法12、7秒或25秒【解析】考点:勾股定理;等腰三角形的性质专题:动点型;分类讨论分析:根据等腰三角形三线合一性质可得到BD的长,由勾股定理可求得AD的长,再分两种情况进行分析:PAACPAAB,从而可得到运动的时间解答:解:如图,作ADBC,交BC于点D,BC=8cm,BD=CD=BC=4cm,AD=3,分两种情况:当点P运动t秒后有PAAC时,AP2=PD2+AD2=PC2-AC2,PD2+AD2=PC2-AC2,PD2+32=(PD+4)2-52PD=2.25,BP=4-2.25=1.75=0.25t,t=7秒,当点P运动t秒后有PAAB时,同理可证得PD=2.25,BP=4+2.25=6.25=0.25t,t=25秒,点P运动的时间为7秒或25秒点评:本题利用了等腰三角形的性质和勾股定理求解13、【解析】分析:根据勾股定理,可得 ,根据平行四边形的性质,可得答案.详解:由勾股定理得:= ,即(0,4).矩形ABCD的边AB在x轴上,四边形是平行四边形,A=B, =AB=4-(-3)=7, 与的纵坐标相等,(7,4),故答案为(7,4).点睛:本题考查了多边形,利用平行四边形的性质得出A=B,=AB=4-(-3)=7是解题的关键.14、1【解析】根据两点间的距离公式可求m的值.【详解】依题意有,解得,故答案为:1【点睛】考查了坐标确定位置,正确理解实际距离的定义是解题关键15、【解析】列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得【详解】解:列表如下:-2-112-22-2-4-12-1-21-2-122-4-22由表可知,共有12种等可能结果,其中积为大于-4小于2的有6种结果,积为大于-4小于2的概率为=,故答案为:【点睛】此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比16、【解析】如图作DHAE于H,连接CG设DG=x,DCE=DEC,DC=DE,四边形ABCD是正方形,AD=DC,ADF=90°,DA=DE,DHAE,AH=HE=DG,在GDC与GDE中,GDCGDE(SAS),GC=GE,DEG=DCG=DAF,AFD=CFG,ADF=CGF=90°,2GDE+2DEG=90°,GDE+DEG=45°,DGH=45°,在RtADH中,AD=8,AH=x,DH=x,82=x2+(x)2,解得:x=,ADHAFD,,AF=4故答案为417、【解析】根据,只要求出、即可解决问题;【详解】四边形是平行四边形,.故答案为.【点睛】本题考查的知识点是平面向量,平行四边形的性质,解题关键是表达出、.三、解答题(共7小题,满分69分)18、(1)P(两个小孩都是女孩);(2)P(三个小孩中恰好是2女1男).【解析】(1)画出树状图即可解题,(2)画出树状图即可解题.【详解】(1)画树状图如下:由树状图可知,生育两胎共有4种等可能结果,而这两个小孩恰好都是女孩的有1种可能,P(两个小孩都是女孩).(2)画树状图如下:由树状图可知,生育两胎共有8种等可能结果,其中这三个小孩中恰好是2女1男的有3种结果,P(三个小孩中恰好是2女1男).【点睛】本题考查了画树状图求解概率,中等难度,画出树状图找到所有可能性是解题关键.19、(1)(2) , 【解析】【分析】(1)根据一元二次方程的定义可知k0,再根据方程有两个不相等的实数根,可知>0,从而可得关于k的不等式组,解不等式组即可得;(2)由(1)可写出满足条件的k的最大整数值,代入方程后求解即可得.【详解】(1) 依题意,得,解得且;(2) 是小于9的最大整数,此时的方程为,解得,. 【点睛】本题考查了一元二次方程根的判别式、一元二次方程的定义、解一元二次方程等,熟练一元二次方程根的判别式与一元二次方程的根的情况是解题的关键.20、(1)见解析;(2)与相切,理由见解析【解析】(1)作出AD的垂直平分线,交AB于点O,进而利用AO为半径求出即可;(2)利用半径相等结合角平分线的性质得出ODAC,进而求出ODBC,进而得出答案【详解】(1)分别以为圆心,大于的长为半径作弧,两弧相交于点和,作直线,与相交于点,以为圆心,为半径作圆,如图即为所作;(2)与相切,理由如下:连接OD,为半径,是等腰三角形,平分,为半径,与相切【点睛】本题主要考查了切线的判定以及线段垂直平分线的作法与性质等知识,掌握切线的判定方法是解题关键21、80;(1)甲;(2);(3)乙学校竞赛成绩较好,理由见解析【解析】首先根据乙校的成绩结合众数的定义即可得出a的值;(1)根据两个学校成绩的中位数进一步判断即可;(2)根据概率的定义,结合乙校优秀成绩的概率进一步求解即可;(3)根据题意,从平均数以及中位数两方面加以比较分析即可.【详解】由乙校成绩可知,其中80出现的次数最多,故80为该组数据的众数,a=80,故答案为:80;(1)由表格可知,甲校成绩的中位数为60,乙校成绩的中位数为75,小明这次竞赛得了分,在他们学校排名属中游略偏上,小明为甲校学生,故答案为:甲;(2)乙校随便抽取一名学生的成绩,该学生成绩为优秀的概率为:,故答案为:;(3)乙校竞赛成绩较好,理由如下:因为乙校的平均分高于甲校的平均分说明平均水平高,乙校的中位数75高于甲校的中位数65,说明乙校分数不低于70分的学生比甲校多,综上所述,乙校竞赛成绩较好.【点睛】本题主要考查了众数、中位数、平均数的定义与简单概率的计算的综合运用,熟练掌握相关概念是解题关键.22、 ();()至少要购进20件甲商品;售完这些商品,则商场可获得的最大利润是2800元【解析】()根据总利润=(甲的售价-甲的进价)×甲的进货数量+(乙的售价-乙的进价)×乙的进货数量列关系式并化简即可得答案;()根据总成本最多投入8000元列不等式即可求出x的范围,即可得答案;根据一次函数的增减性确定其最大值即可.【详解】()根据题意得:则y与x的函数关系式为(),解得至少要购进20件甲商品,y随着x的增大而减小当时,有最大值, 若售完这些商品,则商场可获得的最大利润是2800元【点睛】本题考查一次函数的实际应用及一元一次不等式的应用,熟练掌握一次函数的性质是解题关键.23、 (1) 小强的头部点E与地面DK的距离约为144.5 cm.(2) 他应向前9.5 cm.【解析】试题分析:(1)过点F作FNDK于N,过点E作EMFN于M求出MF、FN的值即可解决问题;(2)求出OH、PH的值即可判断;试题解析:解:(1)过点F作FNDK于N,过点E作EMFN于MEF+FG=166,FG=100,EF=66,FGK=80°,FN=100sin80°98,EFG=125°,EFM=180°125°10°=45°,FM=66cos45°=46.53,MN=FN+FM144.5,此时小强头部E点与地面DK相距约为144.5cm(2)过点E作EPAB于点P,延长OB交MN于HAB=48,O为AB中点,AO=BO=24,EM=66sin45°46.53,PH46.53,GN=100cos80°17,CG=15,OH=24+15+17=56,OP=OHPH=5646.53=9.479.5,他应向前9.5cm24、(1)2 (2)【解析】(1)原式第一项利用负指数幂法则计算,第二项利用特殊角的三角函数值化简,第三项利用绝对值的代数意义化简,最后一项利用零指数幂法则计算可得到结果;(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可【详解】(1)原式=2; (2)【点睛】本题考查了实数运算以及平方根的应用,正确掌握相关运算法则是解题的关键