2022-2023学年广东省揭阳市产业园区重点名校中考数学考前最后一卷含解析.doc
2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1如图,在ABC中,AB=AC,点D是边AC上一点,BC=BD=AD,则A的大小是()A36°B54°C72°D30°2如图,平行四边形 ABCD 中, E为 BC 边上一点,以 AE 为边作正方形AEFG,若 ,则 的度数是 ABCD3若,则的值是()A2B2C4D44直线y=3x+1不经过的象限是()A第一象限B第二象限C第三象限D第四象限5计算(ab2)3的结果是()A3ab2Ba3b6Ca3b5Da3b66如图,AD是O的弦,过点O作AD的垂线,垂足为点C,交O于点F,过点A作O的切线,交OF的延长线于点E若CO=1,AD=2,则图中阴影部分的面积为A4-B2-C4-D2-7如图1,点E为矩形ABCD的边AD上一点,点P从点B出发沿BEEDDC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s若点P、Q同时开始运动,设运动时间为t(s),BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示给出下列结论:当0t10时,BPQ是等腰三角形;SABE=48cm2;14t22时,y=1101t;在运动过程中,使得ABP是等腰三角形的P点一共有3个;当BPQ与BEA相似时,t=14.1其中正确结论的序号是()ABCD8甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:班级参加人数平均数中位数方差甲55135149191乙55135151110某同学分析上表后得出如下结论:甲、乙两班学生的平均成绩相同;乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字150个为优秀);甲班成绩的波动比乙班大上述结论中,正确的是()ABCD9若,则x-y的正确结果是( )ABC-5D510如图是一个几何体的主视图和俯视图,则这个几何体是()A三棱柱B正方体C三棱锥D长方体二、填空题(本大题共6个小题,每小题3分,共18分)11如图,在ABC中,CABC,BEAC,垂足为点E,BDE是等边三角形,若AD4,则线段BE的长为_12若代数式有意义,则实数x的取值范围是_.13已知关于x的方程有两个不相等的实数根,则m的取值范围是_14亲爱的同学们,在我们的生活中处处有数学的身影.请看图,折叠一张三角形纸片,把三角形的三个角拼在一起,就得到一个著名的几何定理,请你写出这一定理的结论:“三角形的三个内角和等于_°.”15如图,如果两个相似多边形任意一组对应顶点P、P所在的直线都是经过同一点O,且有OP=k·OP(k0),那么我们把这样的两个多边形叫位似多边形,点O叫做位似中心,已知ABC与ABC是关于点O的位似三角形,OA=3OA,则ABC与ABC的周长之比是_.16对于实数,我们用符号表示两数中较小的数,如.因此, _;若,则_三、解答题(共8题,共72分)17(8分)计算:|2|+()12cos45°18(8分)某通讯公司推出了A,B两种上宽带网的收费方式(详情见下表)设月上网时间为x h(x为非负整数),请根据表中提供的信息回答下列问题(1)设方案A的收费金额为y1元,方案B的收费金额为y2元,分别写出y1,y2关于x的函数关系式;(2)当35x50时,选取哪种方式能节省上网费,请说明理由19(8分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要时间与原计划生产450台机器所需时间相同现在平均每天生产多少台机器;生产3000台机器,现在比原计划提前几天完成20(8分)2017年10月31日,在广州举行的世界城市日全球主场活动开幕式上,住建部公布许昌成为“国家生态园林城市”在2018年植树节到来之际,许昌某中学购买了甲、乙两种树木用于绿化校园若购买7棵甲种树和4棵乙种树需510元;购买3棵甲种树和5棵乙种树需350元(1)求甲种树和乙种树的单价;(2)按学校规划,准备购买甲、乙两种树共200棵,且甲种树的数量不少于乙种树的数量的,请设计出最省钱的购买方案,并说明理由21(8分)如图,直线yx+4与x轴交于点A,与y轴交于点B抛物线yx2+bx+c经过A,B两点,与x轴的另外一个交点为C填空:b ,c ,点C的坐标为 如图1,若点P是第一象限抛物线上的点,连接OP交直线AB于点Q,设点P的横坐标为mPQ与OQ的比值为y,求y与m的数学关系式,并求出PQ与OQ的比值的最大值如图2,若点P是第四象限的抛物线上的一点连接PB与AP,当PBA+CBO45°时求PBA的面积22(10分)如图,PB与O相切于点B,过点B作OP的垂线BA,垂足为C,交O于点A,连结PA,AO,AO的延长线交O于点E,与PB的延长线交于点D(1)求证:PA是O的切线;(2)若tanBAD=,且OC=4,求BD的长23(12分)如图,以D为顶点的抛物线y=x2+bx+c交x轴于A、B两点,交y轴于点C,直线BC的表达式为y=x+1求抛物线的表达式;在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;在x轴上是否存在一点Q,使得以A、C、Q为顶点的三角形与BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由24在平面直角坐标系xOy中,二次函数yax2+bx+c(a0)的图象经过A(0,4),B(2,0),C(-2,0)三点(1)求二次函数的表达式;(2)在x轴上有一点D(-4,0),将二次函数的图象沿射线DA方向平移,使图象再次经过点B求平移后图象顶点E的坐标;直接写出此二次函数的图象在A,B两点之间(含A,B两点)的曲线部分在平移过程中所扫过的面积参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】由BD=BC=AD可知,ABD,BCD为等腰三角形,设A=ABD=x,则C=CDB=2x,又由AB=AC可知,ABC为等腰三角形,则ABC=C=2x在ABC中,用内角和定理列方程求解【详解】解:BD=BC=AD,ABD,BCD为等腰三角形,设A=ABD=x,则C=CDB=2x又AB=AC,ABC为等腰三角形,ABC=C=2x在ABC中,A+ABC+C=180°,即x+2x+2x=180°,解得:x=36°,即A=36°故选A【点睛】本题考查了等腰三角形的性质关键是利用等腰三角形的底角相等,外角的性质,内角和定理,列方程求解2、A【解析】分析:首先求出AEB,再利用三角形内角和定理求出B,最后利用平行四边形的性质得D=B即可解决问题详解:四边形ABCD是正方形,AEF=90°,CEF=15°,AEB=180°-90°-15°=75°,B=180°-BAE-AEB=180°-40°-75°=65°,四边形ABCD是平行四边形,D=B=65°故选A点睛:本题考查正方形的性质、平行四边形的性质、三角形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型3、D【解析】因为,所以,因为,故选D.4、D【解析】利用两点法可画出函数图象,则可求得答案【详解】在y=3x+1中,令y=0可得x=-,令x=0可得y=1,直线与x轴交于点(-,0),与y轴交于点(0,1),其函数图象如图所示,函数图象不过第四象限,故选:D【点睛】本题主要考查一次函数的性质,正确画出函数图象是解题的关键5、D【解析】根据积的乘方与幂的乘方计算可得【详解】解:(ab2)3=a3b6,故选D【点睛】本题主要考查幂的乘方与积的乘方,解题的关键是掌握积的乘方与幂的乘方的运算法则6、B【解析】由S阴影=SOAE-S扇形OAF,分别求出SOAE、S扇形OAF即可;【详解】连接OA,ODOFAD,AC=CD=,在RtOAC中,由tanAOC=知,AOC=60°,则DOA=120°,OA=2,RtOAE中,AOE=60°,OA=2AE=2,S阴影=SOAE-S扇形OAF=×2×2-.故选B.【点睛】考查了切线的判定和性质;能够通过作辅助线将所求的角转移到相应的直角三角形中,是解答此题的关键要证某线是圆的切线,对于切线的判定:已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可7、D【解析】根据题意,得到P、Q分别同时到达D、C可判断,分段讨论PQ位置后可以判断,再由等腰三角形的分类讨论方法确定,根据两个点的相对位置判断点P在DC上时,存在BPQ与BEA相似的可能性,分类讨论计算即可【详解】解:由图象可知,点Q到达C时,点P到E则BE=BC=10,ED=4故正确则AE=104=6t=10时,BPQ的面积等于 AB=DC=8故 故错误当14t22时, 故正确;分别以A、B为圆心,AB为半径画圆,将两圆交点连接即为AB垂直平分线则A、B及AB垂直平分线与点P运行路径的交点是P,满足ABP是等腰三角形此时,满足条件的点有4个,故错误BEA为直角三角形只有点P在DC边上时,有BPQ与BEA相似由已知,PQ=22t当或时,BPQ与BEA相似分别将数值代入或,解得t=(舍去)或t=14.1故正确故选:D【点睛】本题是动点问题的函数图象探究题,考查了三角形相似判定、等腰三角形判定,应用了分类讨论和数形结合的数学思想8、D【解析】分析:根据平均数、中位数、方差的定义即可判断;详解:由表格可知,甲、乙两班学生的成绩平均成绩相同;根据中位数可以确定,乙班优秀的人数多于甲班优秀的人数;根据方差可知,甲班成绩的波动比乙班大故正确,故选D点睛:本题考查平均数、中位数、方差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型9、A【解析】由题意,得x-2=0,1-y=0,解得x=2,y=1x-y=2-1=-1,故选:A10、A【解析】【分析】根据三视图的知识使用排除法即可求得答案.【详解】如图,由主视图为三角形,排除了B、D,由俯视图为长方形,可排除C,故选A【点睛】本题考查了由三视图判断几何体的知识,做此类题时可利用排除法解答二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】本题首先由等边三角形的性质及垂直定义得到DBE=60°,BEC=90°,再根据等腰三角形的性质可以得出EBC=ABC-60°=C-60°,最后根据三角形内角和定理得出关系式C-60°+C=90°解出C,推出AD=DE,于是得到结论【详解】BDE是正三角形,DBE=60°;在ABC中,C=ABC,BEAC,C=ABC=ABE+EBC,则EBC=ABC-60°=C-60°,BEC=90°;EBC+C=90°,即C-60°+C=90°,解得C=75°,ABC=75°,A=30°,AED=90°-DEB=30°,A=AED,DE=AD=1,BE=DE=1,故答案为:1【点睛】本题主要考查等腰三角形的性质及等边三角形的性质及垂直定义,解题的关键是根据三角形内角和定理列出符合题意的简易方程,从而求出结果12、x5.【解析】根据分母不为零分式有意义,可得答案.【详解】由题意,得x+50,解得x5,故答案是:x5.【点睛】本题考查了分式有意义的条件,利用分母不为零分式有意义得出不等式是解题关键.13、【解析】试题分析:若一元二次方程有两个不相等的实数根,则根的判别式=b24ac0,建立关于m的不等式,解不等式即可求出m的取值范围 关于x的方程x26x+m=0有两个不相等的实数根,=b24ac=(6)24m=364m0, 解得:m1考点:根的判别式14、1【解析】本题主要考查了三角形的内角和定理.解:根据三角形的内角和可知填:115、1:1【解析】分析:根据相似三角形的周长比等于相似比解答详解:ABC与ABC是关于点O的位似三角形,ABCABCOA=1OA,ABC与ABC的周长之比是:OA:OA=1:1故答案为1:1点睛:本题考查的是位似变换的性质,位似变换的性质:两个图形必须是相似形;对应点的连线都经过同一点;对应边平行16、 2或-1 【解析】,min,=;min(x1)2,x2=1,当x>0.5时,(x1)2=1,x1=±1,x1=1,x1=1,解得:x1=2,x2=0(不合题意,舍去),当x0.5时,x2=1,解得:x1=1(不合题意,舍去),x2=1,三、解答题(共8题,共72分)17、+1【解析】分析:直接利用二次根式的性质、负指数幂的性质和特殊角的三角函数值分别化简求出答案详解:原式=22+32× =2+1 =+1点睛:本题主要考查了实数运算,正确化简各数是解题的关键18、(1),;(2)当35x1时,选择B方式能节省上网费,见解析.【解析】(1)根据两种方式的收费标准,进行分类讨论即可求解;(2)当35x1时,计算出y1-y2的值,即可得出答案【详解】解:(1)由题意得:;即;即;(2)选择B方式能节省上网费当35x1时,有y13x45,y21:y1-y2=3x4513x2记y3x-2因为34,有y随x的增大而增大当x35时,y3所以当35x1时,有y3,即y4所以当35x1时,选择B方式能节省上网费【点睛】此题考查了一次函数的应用,注意根据图表得出解题需要的信息,难度一般,正确理解收费标准求出函数解析式是解题的关键19、 (1) 现在平均每天生产1台机器(2) 现在比原计划提前5天完成【解析】(1)因为现在生产600台机器的时间与原计划生产450台机器的时间相同所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间,由此列出方程解答即可;(2)由(1)中解得的数据,原来用的时间-现在用的时间即可求得提前时间.【详解】解:(1)设现在平均每天生产x台机器,则原计划可生产(x-50)台依题意得:,解得:x=1检验x=1是原分式方程的解.(2)由题意得=20-15=5(天)现在比原计划提前5天完成.【点睛】此题考查分式方程的实际运用,找出题目蕴含的数量关系是解决问题的关键.20、(1)甲种树的单价为50元/棵,乙种树的单价为40元/棵(2)当购买1棵甲种树、133棵乙种树时,购买费用最低,理由见解析【解析】(1)设甲种树的单价为x元/棵,乙种树的单价为y元/棵,根据“购买7棵甲种树和4棵乙种树需510元;购买3棵甲种树和5棵乙种树需350元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购买甲种树a棵,则购买乙种树(200-a)棵,根据甲种树的数量不少于乙种树的数量的可得出关于a的一元一次不等式,解之即可得出a的取值范围,再由甲种树的单价比乙种树的单价贵,即可找出最省钱的购买方案【详解】解:(1)设甲种树的单价为x元/棵,乙种树的单价为y元/棵,根据题意得: ,解得: 答:甲种树的单价为50元/棵,乙种树的单价为40元/棵(2)设购买甲种树a棵,则购买乙种树(200a)棵,根据题意得: 解得: a为整数,a1甲种树的单价比乙种树的单价贵,当购买1棵甲种树、133棵乙种树时,购买费用最低【点睛】一元一次不等式的应用,二元一次方程组的应用,读懂题目,是解题的关键.21、(3)3, 2,C(2,4);(2)ym2+m ,PQ与OQ的比值的最大值为;(3)SPBA3【解析】(3)通过一次函数解析式确定A、B两点坐标,直接利用待定系数法求解即可得到b,c的值,令y=4便可得C点坐标(2)分别过P、Q两点向x轴作垂线,通过PQ与OQ的比值为y以及平行线分线段成比例,找到,设点P坐标为(m,-m2+m+2),Q点坐标(n,-n+2),表示出ED、OD等长度即可得y与m、n之间的关系,再次利用即可求解(3)求得P点坐标,利用图形割补法求解即可【详解】(3)直线yx+2与x轴交于点A,与y轴交于点BA(2,4),B(4,2)又抛物线过B(4,2)c2把A(2,4)代入yx2+bx+2得,4×22+2b+2,解得,b3抛物线解析式为,yx2+x+2令x2+x+24,解得,x2或x2C(2,4)(2)如图3,分别过P、Q作PE、QD垂直于x轴交x轴于点E、D设P(m,m2+m+2),Q(n,n+2),则PEm2+m+2,QDn+2又yn又,即把n代入上式得,整理得,2ym2+2mym2+mymax即PQ与OQ的比值的最大值为(3)如图2,OBAOBP+PBA25°PBA+CBO25°OBPCBO此时PB过点(2,4)设直线PB解析式为,ykx+2把点(2,4)代入上式得,42k+2解得,k2直线PB解析式为,y2x+2令2x+2x2+x+2整理得, x23x4解得,x4(舍去)或x5当x5时,2x+22×5+27P(5,7)过P作PHcy轴于点H则S四边形OHPA(OA+PH)OH(2+5)×724SOABOAOB×2×27SBHPPHBH×5×335SPBAS四边形OHPA+SOABSBHP24+7353【点睛】本题考查了函数图象与坐标轴交点坐标的确定,以及利用待定系数法求解抛物线解析式常数的方法,再者考查了利用数形结合的思想将图形线段长度的比化为坐标轴上点之间的线段长度比的思维能力还考查了运用图形割补法求解坐标系内图形的面积的方法22、(1)证明见解析;(2)【解析】试题分析:(1)连接OB,由SSS证明PAOPBO,得出PAO=PBO=90°即可;(2)连接BE,证明PACAOC,证出OC是ABE的中位线,由三角形中位线定理得出BE=2OC,由DBEDPO可求出试题解析:(1)连结OB,则OA=OB如图1,OPAB,AC=BC,OP是AB的垂直平分线,PA=PB在PAO和PBO中,PAOPBO(SSS),PBO=PAOPB为O的切线,B为切点,PBO=90°,PAO=90°,即PAOA,PA是O的切线;(2)连结BE如图2,在RtAOC中,tanBAD=tanCAO=,且OC=4,AC=1,则BC=1在RtAPO中,ACOP,PACAOC,AC2=OCPC,解得PC=9,OP=PC+OC=2在RtPBC中,由勾股定理,得PB=,AC=BC,OA=OE,即OC为ABE的中位线OC=BE,OCBE,BE=2OC=3BEOP,DBEDPO,即,解得BD=23、(1)y=x2+2x+1;(2)P ( ,);(1)当Q的坐标为(0,0)或(9,0)时,以A、C、Q为顶点的三角形与BCD相似【解析】(1)先求得点B和点C的坐标,然后将点B和点C的坐标代入抛物线的解析式得到关于b、c的方程,从而可求得b、c的值;(2)作点O关于BC的对称点O,则O(1,1),则OP+AP的最小值为AO的长,然后求得AO的解析式,最后可求得点P的坐标;(1)先求得点D的坐标,然后求得CD、BC、BD的长,依据勾股定理的逆定理证明BCD为直角三角形,然后分为AQCDCB和ACQDCB两种情况求解即可【详解】(1)把x=0代入y=x+1,得:y=1,C(0,1)把y=0代入y=x+1得:x=1,B(1,0),A(1,0).将C(0,1)、B(1,0)代入y=x2+bx+c得: ,解得b=2,c=1抛物线的解析式为y=x2+2x+1(2)如图所示:作点O关于BC的对称点O,则O(1,1)O与O关于BC对称,PO=POOP+AP=OP+APAOOP+AP的最小值=OA=2OA的方程为y=P点满足解得:所以P ( ,)(1)y=x2+2x+1=(x1)2+4,D(1,4)又C(0,1,B(1,0),CD=,BC=1,DB=2CD2+CB2=BD2,DCB=90°A(1,0),C(0,1),OA=1,CO=1又AOC=DCB=90°,AOCDCB当Q的坐标为(0,0)时,AQCDCB如图所示:连接AC,过点C作CQAC,交x轴与点QACQ为直角三角形,COAQ,ACQAOC又AOCDCB,ACQDCB,即,解得:AQ=3Q(9,0)综上所述,当Q的坐标为(0,0)或(9,0)时,以A、C、Q为顶点的三角形与BCD相似【点睛】本题考查了二次函数的综合应用,解题的关键是掌握待定系数法求二次函数的解析式、轴对称图形的性质、相似三角形的性质和判定,分类讨论的思想24、(1)yx2+4;(2)E(5,9);1.【解析】(1)待定系数法即可解题,(2)求出直线DA的解析式,根据顶点E在直线DA上,设出E的坐标,带入即可求解;AB扫过的面积是平行四边形ABGE,根据S四边形ABGES矩形IOKHSAOBSAEISEHGSGBK,求出点B(2,0),G(7,5),A(0,4),E(5,9),根据坐标几何含义即可解题.【详解】解:(1)A(0,4),B(2,0),C(2,0)二次函数的图象的顶点为A(0,4),设二次函数表达式为yax2+4,将B(2,0)代入,得4a+40,解得,a1,二次函数表达式yx2+4;(2)设直线DA:ykx+b(k0),将A(0,4),D(4,0)代入,得 ,解得, ,直线DA:yx+4,由题意可知,平移后的抛物线的顶点E在直线DA上,设顶点E(m,m+4),平移后的抛物线表达式为y(xm)2+m+4,又平移后的抛物线过点B(2,0),将其代入得,(2m)2+m+40,解得,m15,m20(不合题意,舍去),顶点E(5,9),如图,连接AB,过点B作BLAD交平移后的抛物线于点G,连结EG,四边形ABGE的面积就是图象A,B两点间的部分扫过的面积,过点G作GKx轴于点K,过点E作EIy轴于点I,直线EI,GK交于点H由点A(0,4)平移至点E(5,9),可知点B先向右平移5个单位,再向上平移5个单位至点GB(2,0),点G(7,5),GK5,OB2,OK7,BKOKOB725,A(0,4),E(5,9),AI945,EI5,EH752,HG954,S四边形ABGES矩形IOKHSAOBSAEISEHGSGBK7×9×2×4×5×5×2×4×5×5638251答:图象A,B两点间的部分扫过的面积为1【点睛】本题考查了二次函数解析式的求法,二次函数的图形和性质,二次函数的实际应用,难度较大,建立面积之间的等量关系是解题关键.