2022-2023学年广西省防城港市重点达标名校中考数学适应性模拟试题含解析.doc
-
资源ID:87069134
资源大小:567KB
全文页数:18页
- 资源格式: DOC
下载积分:20金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022-2023学年广西省防城港市重点达标名校中考数学适应性模拟试题含解析.doc
2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列计算正确的是()A(a+2)(a2)a22B(a+1)(a2)a2+a2C(a+b)2a2+b2D(ab)2a22ab+b22如图,线段AB是直线y=4x+2的一部分,点A是直线与y轴的交点,点B的纵坐标为6,曲线BC是双曲线y=的一部分,点C的横坐标为6,由点C开始不断重复“ABC”的过程,形成一组波浪线点P(2017,m)与Q(2020,n)均在该波浪线上,分别过P、Q两点向x轴作垂线段,垂足为点D和E,则四边形PDEQ的面积是()A10BCD153如图是由一些相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体个数最多为()A7B8C9D104下列各数中,最小的数是( )A0BCD5已知抛物线y=(x)(x)(a为正整数)与x轴交于Ma、Na两点,以MaNa表示这两点间的距离,则M1N1+M2N2+M2018N2018的值是()ABCD6正三角形绕其中心旋转一定角度后,与自身重合,旋转角至少为()A30°B60°C120°D180°7的绝对值是()A4BC4D0.48如图,已知OP平分AOB,AOB60°,CP2,CPOA,PDOA于点D,PEOB于点E如果点M是OP的中点,则DM的长是()A2BCD29某市2017年实现生产总值达280亿的目标,用科学记数法表示“280亿”为()A28×109B2.8×108C2.8×109D2.8×101010如图,ABC中,ADBC,AB=AC,BAD=30°,且AD=AE,则EDC等于()A10°B12.5°C15°D20°二、填空题(共7小题,每小题3分,满分21分)112018年5月18日,益阳新建西流湾大桥竣工通车,如图,从沅江A地到资阳B地有两条路线可走,从资阳B地到益阳火车站可经会龙山大桥或西流湾大桥或龙洲大桥到达,现让你随机选择一条从沅江A地出发经过资阳B地到达益阳火车站的行走路线,那么恰好选到经过西流湾大桥的路线的概率是_12在RtABC中,C=90°,sinA=,那么cosA=_13九章算术是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”用今天的话说,大意是:如图,是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门位于的中点,南门位于的中点,出东门15步的处有一树木,求出南门多少步恰好看到位于处的树木(即点在直线上)?请你计算的长为_步14已知 a、b 是方程 x22x10 的两个根,则 a2a+b 的值是_15轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3h,若静水时船速为26km/h,水速为2km/h,则A港和B港相距_km16如图,某景区的两个景点A、B处于同一水平地面上、一架无人机在空中沿MN方向水平飞行进行航拍作业,MN与AB在同一铅直平面内,当无人机飞行至C处时、测得景点A的俯角为45°,景点B的俯角为30°,此时C到地面的距离CD为100米,则两景点A、B间的距离为_米(结果保留根号)17若正多边形的一个外角是45°,则该正多边形的边数是_.三、解答题(共7小题,满分69分)18(10分)解方程:2(x-3)=3x(x-3)19(5分) “端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整)请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率20(8分)讲授“轴对称”时,八年级教师设计了如下:四种教学方法: 教师讲,学生听 教师让学生自己做 教师引导学生画图发现规律 教师让学生对折纸,观察发现规律,然后画图为调查教学效果,八年级教师将上述教学方法作为调研内容发到全年级8个班420名同学手中,要求每位同学选出自己最喜欢的一种他随机抽取了60名学生的调查问卷,统计如图(1) 请将条形统计图补充完整;(2) 计算扇形统计图中方法的圆心角的度数是 ;(3) 八年级同学中最喜欢的教学方法是哪一种?选择这种教学方法的约有多少人?21(10分)问题情境:课堂上,同学们研究几何变量之间的函数关系问题:如图,菱形ABCD的对角线AC,BD相交于点O,AC=4,BD=1点P是AC上的一个动点,过点P作MNAC,垂足为点P(点M在边AD、DC上,点N在边AB、BC上)设AP的长为x(0x4),AMN的面积为y建立模型:(1)y与x的函数关系式为:,解决问题:(1)为进一步研究y随x变化的规律,小明想画出此函数的图象请你补充列表,并在如图的坐标系中画出此函数的图象:x01134y0 0(3)观察所画的图象,写出该函数的两条性质: 22(10分)如图,在ABC中,ABAC,点D在边AC上(1)作ADE,使ADEACB,DE交AB于点E;(尺规作图,保留作图痕迹,不写作法)(2)若BC5,点D是AC的中点,求DE的长23(12分)解分式方程:24(14分)如图,已知三角形ABC的边AB是0的切线,切点为BAC经过圆心0并与圆相交于点D,C,过C作直线CE丄AB,交AB的延长线于点E,(1)求证:CB平分ACE;(2)若BE=3,CE=4,求O的半径.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】A、原式=a24,不符合题意;B、原式=a2a2,不符合题意;C、原式=a2+b2+2ab,不符合题意;D、原式=a22ab+b2,符合题意,故选D2、C【解析】A,C之间的距离为6,点Q与点P的水平距离为3,进而得到A,B之间的水平距离为1,且k=6,根据四边形PDEQ的面积为,即可得到四边形PDEQ的面积【详解】A,C之间的距离为6,2017÷6=3361,故点P离x轴的距离与点B离x轴的距离相同,在y=4x+2中,当y=6时,x=1,即点P离x轴的距离为6,m=6,20202017=3,故点Q与点P的水平距离为3, 解得k=6,双曲线 1+3=4, 即点Q离x轴的距离为, 四边形PDEQ的面积是故选:C【点睛】考查了反比例函数的图象与性质,平行四边形的面积,综合性比较强,难度较大.3、C【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形【详解】根据三视图知,该几何体中小正方体的分布情况如下图所示:所以组成这个几何体的小正方体个数最多为9个,故选C【点睛】考查了三视图判定几何体,关键是对三视图灵活运用,体现了对空间想象能力的考查.4、D【解析】根据实数大小比较法则判断即可【详解】01,故选D【点睛】本题考查了实数的大小比较的应用,掌握正数都大于0,负数都小于0,两个负数比较大小,其绝对值大的反而小是解题的关键5、C【解析】代入y=0求出x的值,进而可得出MaNa=-,将其代入M1N1+M2N2+M2018N2018中即可求出结论【详解】解:当y=0时,有(x-)(x-)=0,解得:x1=,x2=,MaNa=-,M1N1+M2N2+M2018N2018=1-+-+-=1-=故选C【点睛】本题考查了抛物线与x轴的交点坐标、二次函数图象上点的坐标特征以及规律型中数字的变化类,利用二次函数图象上点的坐标特征求出MaNa的值是解题的关键6、C【解析】求出正三角形的中心角即可得解【详解】正三角形绕其中心旋转一定角度后,与自身重合,旋转角至少为120°,故选C【点睛】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角,掌握正多边形的中心角的求解是解题的关键7、B【解析】分析:根据绝对值的性质,一个负数的绝对值等于其相反数,可有相反数的意义求解.详解:因为-的相反数为所以-的绝对值为.故选:B点睛:此题主要考查了求一个数的绝对值,关键是明确绝对值的性质,一个正数的绝对值等于本身,0的绝对值是0,一个负数的绝对值为其相反数.8、C【解析】由OP平分AOB,AOB=60°,CP=2,CPOA,易得OCP是等腰三角形,COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长【详解】解:OP平分AOB,AOB=60°,AOP=COP=30°,CPOA,AOP=CPO,COP=CPO,OC=CP=2,PCE=AOB=60°,PEOB,CPE=30°,CE=CP=1,PE=,OP=2PE=2,PDOA,点M是OP的中点,DM=OP=故选C考点:角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理9、D【解析】根据科学计数法的定义来表示数字,选出正确答案.【详解】解:把一个数表示成a(1a<10,n为整数)与10的幂相乘的形式,这种记数法叫做科学记数法,280亿用科学计数法表示为2.8×1010,所以答案选D.【点睛】本题考查学生对科学计数法的概念的掌握和将数字用科学计数法表示的能力.10、C【解析】试题分析:根据三角形的三线合一可求得DAC及ADE的度数,根据EDC=90°-ADE即可得到答案ABC中,ADBC,AB=AC,BAD=30°,DAC=BAD=30°,AD=AE(已知),ADE=75°EDC=90°-ADE=15°故选C考点:本题主要考查了等腰三角形的性质,三角形内角和定理点评:解答本题的关键是掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合二、填空题(共7小题,每小题3分,满分21分)11、【解析】由题意可知一共有6种可能,经过西流湾大桥的路线有2种可能,根据概率公式计算即可【详解】解:由题意可知一共有6种可能,经过西流湾大桥的路线有2种可能,所以恰好选到经过西流湾大桥的路线的概率=故答案为【点睛】本题考查的是用列表法或画树状图法求概率注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件注意概率=所求情况数与总情况数之比12、 【解析】RtABC中,C=90°,sinA=,sinA=,c=2a,b= ,cosA=,故答案为.13、【解析】分析:由正方形的性质得到EDG=90°,从而KDC+HDA=90°,再由C+KDC=90°,得到C=HDA,即有CKDDHA,由相似三角形的性质得到CK:KD=HD:HA,求解即可得到结论详解:DEFG是正方形,EDG=90°,KDC+HDA=90°C+KDC=90°,C=HDACKD=DHA=90°,CKDDHA,CK:KD=HD:HA,CK:100=100:15,解得:CK=故答案为:点睛:本题考查了相似三角形的应用解题的关键是证明CKDDHA14、1【解析】根据一元二次方程的解及根与系数的关系,可得出a2-2a=1、a+b=2,将其代入a2-a+b中即可求出结论【详解】a、b是方程x2-2x-1=0的两个根,a2-2a=1,a+b=2,a2-a+b=a2-2a+(a+b)=1+2=1故答案为1【点睛】本题考查根与系数的关系以及一元二次方程的解,牢记两根之和等于-、两根之积等于是解题的关键15、1【解析】根据逆流速度=静水速度-水流速度,顺流速度=静水速度+水流速度,表示出逆流速度与顺流速度,根据题意列出方程,求出方程的解问题可解【详解】解:设A港与B港相距xkm,根据题意得: ,解得:x=1,则A港与B港相距1km故答案为:1【点睛】此题考查了分式方程的应用题,解答关键是在顺流、逆流过程中找出等量关系构造方程16、100+100【解析】【分析】由已知可得ACD=MCA=45°,B=NCB=30°,继而可得DCB=60°,从而可得AD=CD=100米,DB= 100米,再根据AB=AD+DB计算即可得.【详解】MN/AB,MCA=45°,NCB=30°,ACD=MCA=45°,B=NCB=30°,CDAB,CDA=CDB=90°,DCB=60°,CD=100米,AD=CD=100米,DB=CDtan60°=CD=100米,AB=AD+DB=100+100(米), 故答案为:100+100【点睛】本题考查了解直角三角形的应用仰角俯角问题,解题的关键是借助俯角构造直角三角形并解直角三角形注意方程思想与数形结合思想的应用 17、1;【解析】根据多边形外角和是360度,正多边形的各个内角相等,各个外角也相等,直接用360°÷45°可求得边数【详解】多边形外角和是360度,正多边形的一个外角是45°,360°÷45°=1即该正多边形的边数是1【点睛】本题主要考查了多边形外角和是360度和正多边形的性质(正多边形的各个内角相等,各个外角也相等)三、解答题(共7小题,满分69分)18、.【解析】先进行移项,在利用因式分解法即可求出答案.【详解】,移项得:,整理得:,或,解得:或【点睛】本题考查了解一元一次方程-因式分解,熟练掌握因式分解的技巧是本题解题的关键.19、(1)600(2)见解析(3)3200(4)【解析】(1)60÷10%=600(人)答:本次参加抽样调查的居民有600人(2分)(2)如图;(5分)(3)8000×40%=3200(人)答:该居民区有8000人,估计爱吃D粽的人有3200人(7分)(4)如图;(列表方法略,参照给分)(8分)P(C粽)=答:他第二个吃到的恰好是C粽的概率是(10分)20、解:(1)见解析; (2) 108°;(3) 最喜欢方法,约有189人.【解析】(1)由题意可知:喜欢方法的学生有60-6-18-27=9(人);(2)求方法的圆心角应先求所占比值,再乘以360°;(3)根据条形的高低可判断喜欢方法的学生最多,人数应该等于总人数乘以喜欢方法所占的比例;【详解】(1)方法人数为6061827=9(人);补条形图如图: (2)方法的圆心角为 故答案为108°(3)由图可以看出喜欢方法的学生最多,人数为 (人);【点睛】考查扇形统计图,条形统计图,用样本估计总体,比较基础,难度不大,是中考常考题型.21、 (1) y=;(1)见解析;(3)见解析【解析】(1)根据线段相似的关系得出函数关系式(1)代入中函数表达式即可填表(3)画图像,分析即可.【详解】(1)设AP=x当0x1时MNBDAPMAODMP=AC垂直平分MNPN=PM=xMN=xy=APMN=当1x4时,P在线段OC上,CP=4xCPMCODPM=MN=1PM=4xy=y=(1)由(1)当x=1时,y=当x=1时,y=1当x=3时,y=(3)根据(1)画出函数图象示意图可知1、当0x1时,y随x的增大而增大1、当1x4时,y随x的增大而减小【点睛】本题考查函数,解题的关键是数形结合思想.22、(1)作图见解析;(2)【解析】(1)根据作一个角等于已知角的步骤解答即可;(2)由作法可得DEBC,又因为D是AC的中点,可证DE为ABC的中位线,从而运用三角形中位线的性质求解【详解】解:(1)如图,ADE为所作;(2)ADE=ACB,DEBC,点D是AC的中点,DE为ABC的中位线,DE=BC=23、【解析】试题分析:方程最简公分母为,方程两边同乘将分式方程转化为整式方程求解,要注意检验试题解析:方程两边同乘,得:,整理解得:,经检验:是原方程的解考点:解分式方程24、(1)证明见解析;(2). 【解析】试题分析:(1)证明:如图1,连接OB,由AB是0的切线,得到OBAB,由于CE丄AB,的OBCE,于是得到1=3,根据等腰三角形的性质得到1=2,通过等量代换得到结果(2)如图2,连接BD通过DBCCBE,得到比例式,列方程可得结果(1)证明:如图1,连接OB,AB是0的切线,OBAB,CE丄AB,OBCE,1=3,OB=OC,1=2,2=3,CB平分ACE;(2)如图2,连接BD,CE丄AB,E=90°,BC=5,CD是O的直径,DBC=90°,E=DBC,DBCCBE,BC2=CDCE,CD=,OC=,O的半径=考点:切线的性质