2022-2023学年广东省湛师附中、实验学校中考五模数学试题含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为40km他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示根据图象信息,下列说法不正确的是( )A甲的速度是10km/hB乙的速度是20km/hC乙出发h后与甲相遇D甲比乙晚到B地2h2如图所示:有理数在数轴上的对应点,则下列式子中错误的是( )ABCD3如图直线ymx与双曲线y=交于点A、B,过A作AMx轴于M点,连接BM,若SAMB2,则k的值是()A1B2C3D44二次函数y=ax2+bx+c(a0)的图象如图,下列四个结论:4a+c0;m(am+b)+ba(m1);关于x的一元二次方程ax2+(b1)x+c=0没有实数根;ak4+bk2a(k2+1)2+b(k2+1)(k为常数)其中正确结论的个数是()A4个B3个C2个D1个5如图是棋盘的一部分,建立适当的平面直角坐标系,已知棋子“车”的坐标为(-2,1),棋子“马”的坐标为(3,-1),则棋子“炮”的坐标为( )A(1,1)B(2,1)C(2,2)D(3,1)6如图,四边形ABCE内接于O,DCE=50°,则BOE=()A100°B50°C70°D130°7有下列四种说法:半径确定了,圆就确定了;直径是弦;弦是直径;半圆是弧,但弧不一定是半圆其中,错误的说法有()A1种B2种C3种D4种8一个几何体由大小相同的小正方体搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在这个位置小正方体的个数从左面看到的这个几何体的形状图的是()ABCD9“绿水青山就是金山银山”某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()ABCD10如图,在平面直角坐标系中,把ABC绕原点O旋转180°得到CDA,点A,B,C的坐标分别为(5,2),(2,2),(5,2),则点D的坐标为()A(2,2)B(2,2)C(2,5)D(2,5)二、填空题(本大题共6个小题,每小题3分,共18分)11已知:如图,ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为_12某个“清涼小屋”自动售货机出售A、B、C三种饮料A、B、C三种饮料的单价分別是2元/瓶、3元/瓶、5元/瓶工作日期间,每天上货量是固定的,且能全部售出,其中,A饮科的数量(单位:瓶)是B饮料数量的2倍,B饮料的数量(单位:瓶)是C饮料数量的2倍某个周六,A、B、C三种饮料的上货量分別比一个工作日的上货量增加了50%、60%、50%,且全部售出但是由于软件bug,发生了一起错单(即消费者按某种饮料一瓶的价格投币,但是取得了另一种饮料1瓶),结果这个周六的销售收入比一个工作日的销售收入多了503元则这个“清凉小屋”自动售货机一个工作日的销售收入是_元13已知抛物线yx2x1与x轴的一个交点为(m,0),则代数式m2m2017的值为_14已知ABC中,AB=6,AC=BC=5,将ABC折叠,使点A落在BC边上的点D处,折痕为EF(点EF分别在边AB、AC上)当以BED为顶点的三角形与DEF相似时,BE的长为_15正多边形的一个外角是60°,边长是2,则这个正多边形的面积为_ .16如图,已知直线与轴、轴相交于、两点,与的图象相交于、两点,连接、.给出下列结论:;不等式的解集是或.其中正确结论的序号是_三、解答题(共8题,共72分)17(8分)先化简,再求值:(2)÷,其中x满足x2x4=018(8分)如果一条抛物线与轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”(1)“抛物线三角形”一定是 三角形;(2)若抛物线的“抛物线三角形”是等腰直角三角形,求的值;(3)如图,是抛物线的“抛物线三角形”,是否存在以原点为对称中心的矩形?若存在,求出过三点的抛物线的表达式;若不存在,说明理由19(8分)已知ACDC,ACDC,直线MN经过点A,作DBMN,垂足为B,连接CB(1)直接写出D与MAC之间的数量关系;(2)如图1,猜想AB,BD与BC之间的数量关系,并说明理由;如图2,直接写出AB,BD与BC之间的数量关系;(3)在MN绕点A旋转的过程中,当BCD30°,BD时,直接写出BC的值20(8分)光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,先将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区两地区与该农机租赁公司商定的每天的租赁价格见表:每台甲型收割机的租金每台乙型收割机的租金A地区18001600B地区16001200(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x间的函数关系式,并写出x的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,说明有多少种分配方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提一条合理化建议21(8分)某校数学综合实践小组的同学以“绿色出行”为主题,把某小区的居民对共享单车的了解和使用情况进行了问卷调查.在这次调查中,发现有20人对于共享单车不了解,使用共享单车的居民每天骑行路程不超过8千米,并将调查结果制作成统计图,如下图所示:本次调查人数共 人,使用过共享单车的有 人;请将条形统计图补充完整;如果这个小区大约有3000名居民,请估算出每天的骑行路程在24千米的有多少人?22(10分)如图,在ABC中,ABC=90°,以AB为直径的O与AC边交于点D,过点D的直线交BC边于点E,BDE=A判断直线DE与O的位置关系,并说明理由若O的半径R=5,tanA=,求线段CD的长23(12分)如图,一次函数y=x+4的图象与反比例函数y=(k为常数,且k0)的图象交于A(1,a),B(3,b)两点求反比例函数的表达式在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标求PAB的面积24计算:.参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】由图可知,甲用4小时走完全程40km,可得速度为10km/h;乙比甲晚出发一小时,用1小时走完全程,可得速度为40km/h故选B2、C【解析】从数轴上可以看出a、b都是负数,且ab,由此逐项分析得出结论即可【详解】由数轴可知:a<b<0,A、两数相乘,同号得正,ab0是正确的;B、同号相加,取相同的符号,a+b0是正确的;C、ab0,故选项是错误的;D、a-b=a+(-b)取a的符号,a-b0是正确的故选:C【点睛】此题考查有理数的混合运算,数轴,解题关键在于结合数轴进行解答.3、B【解析】此题可根据反比例函数图象的对称性得到A、B两点关于原点对称,再由SABM=1SAOM并结合反比例函数系数k的几何意义得到k的值【详解】根据双曲线的对称性可得:OA=OB,则SABM1SAOM1,SAOM|k|1,则k±1又由于反比例函数图象位于一三象限,k0,所以k1故选B【点睛】本题主要考查了反比例函数y中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点4、D【解析】因为二次函数的对称轴是直线x=1,由图象可得左交点的横坐标大于3,小于2,所以=1,可得b=2a,当x=3时,y0,即9a3b+c0,9a6a+c0,3a+c0,a0,4a+c0,所以选项结论正确;抛物线的对称轴是直线x=1,y=ab+c的值最大,即把x=m(m1)代入得:y=am2+bm+cab+c,am2+bmab,m(am+b)+ba,所以此选项结论不正确;ax2+(b1)x+c=0,=(b1)24ac,a0,c0,ac0,4ac0,(b1)20,0,关于x的一元二次方程ax2+(b1)x+c=0有实数根;由图象得:当x1时,y随x的增大而减小,当k为常数时,0k2k2+1,当x=k2的值大于x=k2+1的函数值,即ak4+bk2+ca(k2+1)2+b(k2+1)+c,ak4+bk2a(k2+1)2+b(k2+1),所以此选项结论不正确;所以正确结论的个数是1个,故选D5、B【解析】直接利用已知点坐标建立平面直角坐标系进而得出答案【详解】解:根据棋子“车”的坐标为(-2,1),建立如下平面直角坐标系:棋子“炮”的坐标为(2,1),故答案为:B【点睛】本题考查了坐标确定位置,正确建立平面直角坐标系是解题的关键6、A【解析】根据圆内接四边形的任意一个外角等于它的内对角求出A,根据圆周角定理计算即可【详解】四边形ABCE内接于O,由圆周角定理可得,故选:A【点睛】本题考查的知识点是圆的内接四边形性质,解题关键是熟记圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).7、B【解析】根据弦的定义、弧的定义、以及确定圆的条件即可解决【详解】解:圆确定的条件是确定圆心与半径,是假命题,故此说法错误;直径是弦,直径是圆内最长的弦,是真命题,故此说法正确;弦是直径,只有过圆心的弦才是直径,是假命题,故此说法错误;半圆是弧,但弧不一定是半圆,圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫半圆,所以半圆是弧但比半圆大的弧是优弧,比半圆小的弧是劣弧,不是所有的弧都是半圆,是真命题,故此说法正确其中错误说法的是两个故选B【点睛】本题考查弦与直径的区别,弧与半圆的区别,及确定圆的条件,不要将弦与直径、弧与半圆混淆8、B【解析】分析:由已知条件可知,从正面看有1列,每列小正方数形数目分别为4,1,2;从左面看有1列,每列小正方形数目分别为1,4,1据此可画出图形详解:由俯视图及其小正方体的分布情况知,该几何体的主视图为:该几何体的左视图为:故选:B点睛:此题主要考查了几何体的三视图画法由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字9、C【解析】分析:设实际工作时每天绿化的面积为x万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x的分式方程详解:设实际工作时每天绿化的面积为x万平方米,则原来每天绿化的面积为万平方米,依题意得:,即故选C点睛:考查了由实际问题抽象出分式方程找到关键描述语,找到合适的等量关系是解决问题的关键10、A【解析】分析:依据四边形ABCD是平行四边形,即可得到BD经过点O,依据B的坐标为(2,2),即可得出D的坐标为(2,2)详解:点A,C的坐标分别为(5,2),(5,2),点O是AC的中点,AB=CD,AD=BC,四边形ABCD是平行四边形,BD经过点O,B的坐标为(2,2),D的坐标为(2,2),故选A点睛:本题主要考查了坐标与图形变化,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】【分析】设四边形BCED的面积为x,则SADE=12x,由题意知DEBC且DE=BC,从而得,据此建立关于x的方程,解之可得【详解】设四边形BCED的面积为x,则SADE=12x,点D、E分别是边AB、AC的中点,DE是ABC的中位线,DEBC,且DE=BC,ADEABC,则=,即,解得:x=1,即四边形BCED的面积为1,故答案为1【点睛】本题主要考查相似三角形的判定与性质,解题的关键是掌握中位线定理及相似三角形的面积比等于相似比的平方的性质12、950【解析】设工作日期间C饮料数量为x瓶,则B饮料数量为2x瓶,A饮料数量为4x瓶,得到工作日期间一天的销售收入为:8x+6x+5x19x元,和周六销售销售收入为:12x+9.6x+7.5x29.1x元,再结合题意得到10.1x(53)503,计算即可得到答案.【详解】解:设工作日期间C饮料数量为x瓶,则B饮料数量为2x瓶,A饮料数量为4x瓶,工作日期间一天的销售收入为:8x+6x+5x19x元,周六C饮料数量为1.5x瓶,则B饮料数量为3.2x瓶,A饮料数量为6x瓶,周六销售销售收入为:12x+9.6x+7.5x29.1x元,周六销售收入与工作日期间一天销售收入的差为:29.1x19x10.1x元,由于发生一起错单,收入的差为503元,因此,503加减一瓶饮料的差价一定是10.1的整数倍,所以这起错单发生在B、C饮料上(B、C一瓶的差价为2元),且是消费者付B饮料的钱,取走的是C饮料;于是有:10.1x(53)503解得:x50工作日期间一天的销售收入为:19×50950元,故答案为:950.【点睛】本题考查一元一次方程的实际应用,解题的关键是由题意得到等量关系.13、1【解析】把点(m,0)代入yx2x1,求出m2m1,代入即可求出答案【详解】二次函数yx2x1的图象与x轴的一个交点为(m,0),m2m10,m2m1,m2m+20171+20171故答案为:1【点睛】本题考查了抛物线与x轴的交点问题,求代数式的值的应用,解答此题的关键是求出m2m1,难度适中14、3或【解析】以BED为顶点的三角形与DEF相似分两种情形画图分别求解即可.【详解】如图作CMAB当FED=EDB时,B=EAF=EDFEDFDBEEFCB,设EF交AD于点OAO=OD,OEBDAE= EB=3当FED=DEB时则FED=FEA=DEB=60°此时FEDDEB,设AE=ED=x,作DNAB于N,则EN=,DN=,DNCM,xBE=6-x=故答案为3或【点睛】本题考察学生对相似三角形性质定理的掌握和应用,熟练掌握相似三角形性质定理是解答本题的关键,本题计算量比较大,计算能力也很关键.15、6【解析】多边形的外角和等于360°,因为所给多边形的每个外角均相等,据此即可求得正多边形的边数,进而求解【详解】正多边形的边数是:360°÷60°=6.正六边形的边长为2cm,由于正六边形可分成六个全等的等边三角形,且等边三角形的边长与正六边形的边长相等,所以正六边形的面积.故答案是:.【点睛】本题考查了正多边形的外角和以及正多边形的计算,正六边形可分成六个全等的等边三角形,转化为等边三角形的计算.16、【解析】分析:根据一次函数和反比例函数的性质得到k1k20,故错误;把A(-2,m)、B(1,n)代入y=中得到-2m=n故正确;把A(-2,m)、B(1,n)代入y=k1x+b得到y=-mx-m,求得P(-1,0),Q(0,-m),根据三角形的面积公式即可得到SAOP=SBOQ;故正确;根据图象得到不等式k1x+b的解集是x-2或0x1,故正确详解:由图象知,k10,k20,k1k20,故错误;把A(-2,m)、B(1,n)代入y=中得-2m=n,m+n=0,故正确;把A(-2,m)、B(1,n)代入y=k1x+b得,,-2m=n,y=-mx-m,已知直线y=k1x+b与x轴、y轴相交于P、Q两点,P(-1,0),Q(0,-m),OP=1,OQ=m,SAOP=m,SBOQ=m,SAOP=SBOQ;故正确;由图象知不等式k1x+b的解集是x-2或0x1,故正确;故答案为:点睛:本题考查了反比例函数与一次函数的交点,求两直线的交点坐标,三角形面积的计算,正确的理解题意是解题的关键三、解答题(共8题,共72分)17、1【解析】首先运用乘法分配律将所求的代数式去括号,然后再合并化简,最后整体代入求解.【详解】解:(2)÷=x232x+2=x22x1,x2x4=0,x22x=8,原式=81=1【点睛】分式混合运算要注意先去括号;分子、 分母能因式分解的先因式分解;除法要统一为乘法运算.注意整体代入思想在代数求值计算中的应用.18、(1)等腰(2)(3)存在, 【解析】解:(1)等腰 (2)抛物线的“抛物线三角形”是等腰直角三角形, 该抛物线的顶点满足 (3)存在 如图,作与关于原点中心对称, 则四边形为平行四边形 当时,平行四边形为矩形 又, 为等边三角形 作,垂足为 , , 设过点三点的抛物线,则 解之,得 所求抛物线的表达式为19、(1)相等或互补;(2)BD+ABBC;ABBDBC;(3)BC 或.【解析】(1)分为点C,D在直线MN同侧和点C,D在直线MN两侧,两种情况讨论即可解题,(2)作辅助线,证明BCDFCA,得BCFC,BCDFCA,FCB90°,即BFC是等腰直角三角形,即可解题, 在射线AM上截取AFBD,连接CF,证明BCDFCA,得BFC是等腰直角三角形,即可解题,(3)分为当点C,D在直线MN同侧,当点C,D在直线MN两侧,两种情况解题即可,见详解.【详解】解:(1)相等或互补;理由:当点C,D在直线MN同侧时,如图1,ACCD,BDMN,ACDBDC90°,在四边形ABDC中,BAD+D360°ACDBDC180°,BAC+CAM180°,CAMD;当点C,D在直线MN两侧时,如图2,ACDABD90°,AECBED,CABD,CAB+CAM180°,CAM+D180°,即:D与MAC之间的数量是相等或互补;(2)猜想:BD+ABBC如图3,在射线AM上截取AFBD,连接CF又DFAC,CDACBCDFCA,BCFC,BCDFCAACCDACD90°即ACB+BCD90°ACB+FCA90°即FCB90°BFAF+ABBFBD+AB;如图2,在射线AM上截取AFBD,连接CF,又DFAC,CDACBCDFCA,BCFC,BCDFCAACCDACD90°即ACB+BCD90°ACB+FCA90°即FCB90°BFABAFBFABBD;(3)当点C,D在直线MN同侧时,如图31,由(2)知,ACFDCB,CFBC,ACFACD90°,ABC45°,ABD90°,CBD45°,过点D作DGBC于G,在RtBDG中,CBD45°,BD,DGBG1,在RtCGD中,BCD30°,CGDG,BCCG+BG+1,当点C,D在直线MN两侧时,如图21,过点D作DGCB交CB的延长线于G,同的方法得,BG1,CG,BCCGBG1即:BC 或,【点睛】本题考查了三角形中的边长关系,等腰直角三角形的性质,中等难度,分类讨论与作辅助线是解题关键.20、(1)y=200x+74000(10x30)(2)有三种分配方案,方案一:派往A地区的甲型联合收割机2台,乙型联合收割机28台,其余的全派往B地区;方案二:派往A地区的甲型联合收割机1台,乙型联合收割机29台,其余的全派往B地区;方案三:派往A地区的甲型联合收割机0台,乙型联合收割机30台,其余的全派往B地区;(3)派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高【解析】(1)根据题意和表格中的数据可以得到y关于x的函数关系式;(2)根据题意可以得到相应的不等式,从而可以解答本题;(3)根据(1)中的函数解析式和一次函数的性质可以解答本题【详解】解:(1)设派往A地区x台乙型联合收割机,则派往B地区x台乙型联合收割机为(30x)台,派往A、B地区的甲型联合收割机分别为(30x)台和(x10)台,y=1600x+1200(30x)+1800(30x)+1600(x10)=200x+74000(10x30);(2)由题意可得,200x+7400079600,得x28,28x30,x为整数,x=28、29、30,有三种分配方案,方案一:派往A地区的甲型联合收割机2台,乙型联合收割机28台,其余的全派往B地区;方案二:派往A地区的甲型联合收割机1台,乙型联合收割机29台,其余的全派往B地区;方案三:派往A地区的甲型联合收割机0台,乙型联合收割机30台,其余的全派往B地区;(3)派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高,理由:y=200x+74000中y随x的增大而增大,当x=30时,y取得最大值,此时y=80000,派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高【点睛】本题考查一次函数的性质,解题关键是明确题意,找出所求问题需要的条件,利用一次函数和不等式的性质解答21、(1)200,90 (2)图形见解析(3)750人【解析】试题分析:(1)用对于共享单车不了解的人数20除以对于共享单车不了解的人数所占得百分比即可得本次调查人数;用总人数乘以使用过共享单车人数所占的百分比即可得使用过共享单车的人数;(2)用使用过共享单车的总人数减去02,46,68的人数,即可得24的人数,再图上画出即可;(3)用3000乘以骑行路程在24千米的人数所占的百分比即可得每天的骑行路程在24千米的人数.试题解析:(1)20÷10%=200,200×(1-45%-10%)=90 ; (2)90-25-10-5=50,补全条形统计图 (3)=750(人) 答: 每天的骑行路程在24千米的大约750人22、(1) DE与O相切; 理由见解析;(2)【解析】(1)连接OD,利用圆周角定理以及等腰三角形的性质得出ODDE,进而得出答案;(2)得出BCDACB,进而利用相似三角形的性质得出CD的长【详解】解:(1)直线DE与O相切理由如下:连接ODOA=ODODA=A又BDE=AODA=BDEAB是O直径ADB=90°即ODA+ODB=90°BDE+ODB=90°ODE=90°ODDEDE与O相切;(2)R=5,AB=10,在RtABC中tanA=BC=ABtanA=10×,AC=,BDC=ABC=90°,BCD=ACBBCDACBCD=【点睛】本题考查切线的判定、勾股定理及相似三角形的判定与性质,掌握相关性质定理灵活应用是本题的解题关键23、(1)反比例函数的表达式y=,(2)点P坐标(,0), (3)SPAB= 1.1 【解析】(1)把点A(1,a)代入一次函数中可得到A点坐标,再把A点坐标代入反比例解析式中即可得到反比例函数的表达式;(2)作点D关于x轴的对称点D,连接AD交x轴于点P,此时PA+PB的值最小.由B可知D点坐标,再由待定系数法求出直线AD的解析式,即可得到点P的坐标;(3)由SPAB=SABDSPBD即可求出PAB的面积.解:(1)把点A(1,a)代入一次函数y=x+4,得a=1+4, 解得a=3, A(1,3), 点A(1,3)代入反比例函数y=, 得k=3, 反比例函数的表达式y=, (2)把B(3,b)代入y=得,b=1点B坐标(3,1);作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小, D(3,1),设直线AD的解析式为y=mx+n, 把A,D两点代入得, 解得m=2,n=1, 直线AD的解析式为y=2x+1, 令y=0,得x=, 点P坐标(,0),(3)SPAB=SABDSPBD=×2×2×2×=2=1.1 点晴:本题是一道一次函数与反比例函数的综合题,并与几何图形结合在一起来求有关于最值方面的问题.此类问题的重点是在于通过待定系数法求出函数图象的解析式,再通过函数解析式反过来求坐标,为接下来求面积做好铺垫.24、 【解析】【分析】括号内先进行通分,进行分式的加减法运算,然后再与括号外的分式进行分式乘除法运算即可.【详解】原式= =.【点睛】本题考查了分式的混合运算,熟练掌握有关分式的运算法则是解题的关键.