2022-2023学年河北省保定市定兴二中学三校区重点名校中考适应性考试数学试题含解析.doc
-
资源ID:87069207
资源大小:1MB
全文页数:22页
- 资源格式: DOC
下载积分:20金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022-2023学年河北省保定市定兴二中学三校区重点名校中考适应性考试数学试题含解析.doc
2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1对于反比例函数,下列说法不正确的是()A点(2,1)在它的图象上B它的图象在第一、三象限C当x0时,y随x的增大而增大D当x0时,y随x的增大而减小2下列事件中,属于必然事件的是( )A三角形的外心到三边的距离相等B某射击运动员射击一次,命中靶心C任意画一个三角形,其内角和是 180°D抛一枚硬币,落地后正面朝上3如图,小岛在港口P的北偏西60°方向,距港口56海里的A处,货船从港口P出发,沿北偏东45°方向匀速驶离港口,4小时后货船在小岛的正东方向,则货船的航行速度是( )A7海里/时B7海里/时C7海里/时D28海里/时4如图,共有12个大不相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分现从其余的小正方形中任取一个涂上阴影,则能构成这个正方体的表面展开图的概率是()ABCD5如图,BD为O的直径,点A为弧BDC的中点,ABD35°,则DBC()A20°B35°C15°D45°6如图,是的直径,是的弦,连接,则与的数量关系为( )ABCD7下列各式中正确的是()A =±3 B =3 C =3 D8二次函数y=ax2+bx+c(a0)的图象如图,则反比例函数y=与一次函数y=bxc在同一坐标系内的图象大致是( )ABCD9已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A1一定不是关于x的方程x2+bx+a=0的根B0一定不是关于x的方程x2+bx+a=0的根C1和1都是关于x的方程x2+bx+a=0的根D1和1不都是关于x的方程x2+bx+a=0的根10如图所示,在平面直角坐标系中A(0,0),B(2,0),AP1B是等腰直角三角形,且P1=90°,把AP1B绕点B顺时针旋转180°,得到BP2C;把BP2C绕点C顺时针旋转180°,得到CP3D,依此类推,则旋转第2017次后,得到的等腰直角三角形的直角顶点P2018的坐标为()A(4030,1)B(4029,1)C(4033,1)D(4035,1)二、填空题(本大题共6个小题,每小题3分,共18分)11当4x2时,函数y=(x+3)2+2的取值范围为_.12如图,在平面直角坐标系中,的顶点、在坐标轴上,点的坐标是(2,2)将ABC沿轴向左平移得到A1B1C1,点落在函数y=-如果此时四边形的面积等于,那么点的坐标是_13分解因式:4a21_14如图,四边形ABCD中,E,F,G,H分别是边AB、BC、CD、DA的中点若四边形EFGH为菱形,则对角线AC、BD应满足条件_15如图,在等腰ABC中,AB=AC,BC边上的高AD=6cm,腰AB上的高CE=8cm,则BC=_cm16如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是_三、解答题(共8题,共72分)17(8分)已知反比例函数的图象经过三个点A(4,3),B(2m,y1),C(6m,y2),其中m1(1)当y1y2=4时,求m的值;(2)如图,过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,点P在x轴上,若三角形PBD的面积是8,请写出点P坐标(不需要写解答过程)18(8分)如图,水渠边有一棵大木瓜树,树干DO(不计粗细)上有两个木瓜A、B(不计大小),树干垂直于地面,量得AB=2米,在水渠的对面与O处于同一水平面的C处测得木瓜A的仰角为45°、木瓜B的仰角为30°求C处到树干DO的距离CO(结果精确到1米)(参考数据:,)19(8分)观察下列等式:第1个等式:a1=-1,第2个等式:a2=,第3个等式:a3=2-,第4个等式:a4=-2,按上述规律,回答以下问题:请写出第n个等式:an=_.a1+a2+a3+an=_.20(8分)已知顶点为A的抛物线ya(x)22经过点B(,2),点C(,2)(1)求抛物线的表达式;(2)如图1,直线AB与x轴相交于点M,与y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若OPMMAF,求POE的面积;(3)如图2,点Q是折线ABC上一点,过点Q作QNy轴,过点E作ENx轴,直线QN与直线EN相交于点N,连接QE,将QEN沿QE翻折得到QEN,若点N落在x轴上,请直接写出Q点的坐标21(8分)解方程:122(10分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量(件)与销售单价(元)之间存在一次函数关系,如图所示.求与之间的函数关系式;如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.23(12分)某楼盘2018年2月份准备以每平方米7500元的均价对外销售,由于国家有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格连续两个月进行下调,4 月份下调到每平方米6075元的均价开盘销售(1)求3、4两月平均每月下调的百分率;(2)小颖家现在准备以每平方米6075元的开盘均价,购买一套100平方米的房子,因为她家一次性付清购房款,开发商还给予以下两种优惠方案以供选择:打9.8折销售;不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,小颖家选择哪种方案更优惠?(3)如果房价继续回落,按此平均下调的百分率,请你预测到6月份该楼盘商品房成交均价是否会跌破4800元/平方米,请说明理由24某商场销售一批名牌衬衫,平均每天可以销售20件,每件盈利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】由题意分析可知,一个点在函数图像上则代入该点必定满足该函数解析式,点(-2,-1)代入可得,x=-2时,y=-1,所以该点在函数图象上,A正确;因为2大于0所以该函数图象在第一,三象限,所以B正确;C中,因为2大于0,所以该函数在x0时,y随x的增大而减小,所以C错误;D中,当x0时,y随x的增大而减小,正确,故选C.考点:反比例函数【点睛】本题属于对反比例函数的基本性质以及反比例函数的在各个象限单调性的变化2、C【解析】分析:必然事件就是一定发生的事件,依据定义即可作出判断详解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C、三角形的内角和是180°,是必然事件,故本选项符合题意;D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选C点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件3、A【解析】试题解析:设货船的航行速度为海里/时,小时后货船在点处,作于点.由题意海里,海里,在中, 所以在中, 所以所以解得:故选A.4、D【解析】由正方体表面展开图的形状可知,此正方体还缺一个上盖,故应在图中四块相连的空白正方形中选一块,再根据概率公式解答即可【详解】因为共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,所以剩下7个小正方形在其余的7个小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的小正方形有4个,因此先从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是故选D【点睛】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比,掌握概率公式是本题的关键5、A【解析】根据ABD35°就可以求出的度数,再根据,可以求出 ,因此就可以求得的度数,从而求得DBC【详解】解:ABD35°,的度数都是70°,BD为直径,的度数是180°70°110°,点A为弧BDC的中点,的度数也是110°,的度数是110°+110°180°40°,DBC20°,故选:A【点睛】本题考查了等腰三角形性质、圆周角定理,主要考查学生的推理能力6、C【解析】首先根据圆周角定理可知B=C,再根据直径所得的圆周角是直角可得ADB=90°,然后根据三角形的内角和定理可得DAB+B=90°,所以得到DAB+C=90°,从而得到结果.【详解】解:是的直径,ADB=90°.DAB+B=90°.B=C,DAB+C=90°.故选C.【点睛】本题考查了圆周角定理及其逆定理和三角形的内角和定理,掌握相关知识进行转化是解题的关键.7、D【解析】原式利用平方根、立方根定义计算即可求出值【详解】解:A、原式=3,不符合题意;B、原式=|-3|=3,不符合题意;C、原式不能化简,不符合题意;D、原式=2-=,符合题意,故选:D【点睛】此题考查了立方根,以及算术平方根,熟练掌握各自的性质是解本题的关键8、C【解析】根据二次函数的图象找出a、b、c的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论【详解】解:观察二次函数图象可知:开口向上,a1;对称轴大于1,1,b1;二次函数图象与y轴交点在y轴的正半轴,c1反比例函数中ka1,反比例函数图象在第二、四象限内;一次函数ybxc中,b1,c1,一次函数图象经过第二、三、四象限故选C【点睛】本题考查了二次函数的图象、反比例函数的图象以及一次函数的图象,解题的关键是根据二次函数的图象找出a、b、c的正负本题属于基础题,难度不大,解决该题型题目时,根据二次函数图象找出a、b、c的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论9、D【解析】根据方程有两个相等的实数根可得出b=a+1或b=-(a+1),当b=a+1时,-1是方程x2+bx+a=0的根;当b=-(a+1)时,1是方程x2+bx+a=0的根再结合a+1-(a+1),可得出1和-1不都是关于x的方程x2+bx+a=0的根【详解】关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,b=a+1或b=-(a+1)当b=a+1时,有a-b+1=0,此时-1是方程x2+bx+a=0的根;当b=-(a+1)时,有a+b+1=0,此时1是方程x2+bx+a=0的根a+10,a+1-(a+1),1和-1不都是关于x的方程x2+bx+a=0的根故选D【点睛】本题考查了根的判别式以及一元二次方程的定义,牢记“当=0时,方程有两个相等的实数根”是解题的关键10、D【解析】根据题意可以求得P1,点P2,点P3的坐标,从而可以发现其中的变化的规律,从而可以求得P2018的坐标,本题得以解决【详解】解:由题意可得,点P1(1,1),点P2(3,-1),点P3(5,1),P2018的横坐标为:2×2018-1=4035,纵坐标为:-1,即P2018的坐标为(4035,-1),故选:D【点睛】本题考查了点的坐标变化规律,解答本题的关键是发现各点的变化规律,求出相应的点的坐标二、填空题(本大题共6个小题,每小题3分,共18分)11、-23y2【解析】先根据a=-1判断出抛物线的开口向下,故有最大值,可知对称轴x=-3,再根据-4x2,可知当x=-3时y最大,把x=2时y最小代入即可得出结论【详解】解:a=-1,抛物线的开口向下,故有最大值,对称轴x=-3,当x=-3时y最大为2,当x=2时y最小为-23,函数y的取值范围为-23y2,故答案为:-23y2.【点睛】本题考查二次函数的性质,掌握抛物线的开口方向、对称轴以及增减性是解题关键12、 (-5, )【解析】分析:依据点B的坐标是(2,2),BB2AA2,可得点B2的纵坐标为2,再根据点B2落在函数y=的图象上,即可得到BB2=AA2=5=CC2,依据四边形AA2C2C的面积等于,可得OC=,进而得到点C2的坐标是(5,)详解:如图,点B的坐标是(2,2),BB2AA2,点B2的纵坐标为2又点B2落在函数y=的图象上,当y=2时,x=3,BB2=AA2=5=CC2又四边形AA2C2C的面积等于,AA2×OC=,OC=,点C2的坐标是(5,) 故答案为(5,) 点睛:本题主要考查了反比例函数的综合题的知识,解答本题的关键是熟练掌握反比例函数的性质以及平移的性质在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度13、(2a+1)(2a1)【解析】有两项,都能写成完全平方数的形式,并且符号相反,可用平方差公式展开【详解】4a21(2a+1)(2a1)故答案为:(2a+1)(2a-1).【点睛】此题考查多项式因式分解,根据多项式的特点选择适合的分解方法是解题的关键.14、AC=BD【解析】试题分析:添加的条件应为:AC=BD,把AC=BD作为已知条件,根据三角形的中位线定理可得,HG平行且等于AC的一半,EF平行且等于AC的一半,根据等量代换和平行于同一条直线的两直线平行,得到HG和EF平行且相等,所以EFGH为平行四边形,又EH等于BD的一半且AC=BD,所以得到所证四边形的邻边EH与HG相等,所以四边形EFGH为菱形试题解析:添加的条件应为:AC=BD证明:E,F,G,H分别是边AB、BC、CD、DA的中点,在ADC中,HG为ADC的中位线,所以HGAC且HG=AC;同理EFAC且EF=AC,同理可得EH=BD,则HGEF且HG=EF,四边形EFGH为平行四边形,又AC=BD,所以EF=EH,四边形EFGH为菱形考点:1菱形的性质;2三角形中位线定理15、 【解析】根据三角形的面积公式求出,根据等腰三角形的性质得到BDDCBC,根据勾股定理列式计算即可【详解】AD是BC边上的高,CE是AB边上的高,ABCEBCAD,AD6,CE8,ABAC,ADBC,BDDCBC,AB2BD2AD2,AB2BC236,即BC2BC236,解得:BC故答案为:【点睛】本题考查的是等腰三角形的性质、勾股定理的应用和三角形面积公式的应用,根据三角形的面积公式求出腰与底的比是解题的关16、【解析】如图,有5种不同取法;故概率为 .三、解答题(共8题,共72分)17、(1)m=1;(2)点P坐标为(2m,1)或(6m,1)【解析】(1)先根据反比例函数的图象经过点A(4,3),利用待定系数法求出反比例函数的解析式为y=,再由反比例函数图象上点的坐标特征得出y1=,y2=,然后根据y1y2=4列出方程=4,解方程即可求出m的值;(2)设BD与x轴交于点E根据三角形PBD的面积是8列出方程PE=8,求出PE=4m,再由E(2m,1),点P在x轴上,即可求出点P的坐标【详解】解:(1)设反比例函数的解析式为y=,反比例函数的图象经过点A(4,3),k=4×(3)=12,反比例函数的解析式为y=,反比例函数的图象经过点B(2m,y1),C(6m,y2),y1=,y2=,y1y2=4,=4,m=1,经检验,m=1是原方程的解,故m的值是1;(2)设BD与x轴交于点E,点B(2m,),C(6m,),过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,D(2m,),BD=,三角形PBD的面积是8,BDPE=8,PE=8,PE=4m,E(2m,1),点P在x轴上,点P坐标为(2m,1)或(6m,1)【点睛】本题考查了待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特征以及三角形的面积,正确求出双曲线的解析式是解题的关键18、解:设OC=x,在RtAOC中,ACO=45°,OA=OC=x在RtBOC中,BCO=30°,AB=OAOB=,解得OC=5米答:C处到树干DO的距离CO为5米【解析】解直角三角形的应用(仰角俯角问题),锐角三角函数定义,特殊角的三角函数值【分析】设OC=x,在RtAOC中,由于ACO=45°,故OA=x,在RtBOC中,由于BCO=30°,故,再根据AB=OAOB=2即可得出结论19、(1)=; (2) 【解析】(1)根据题意可知,由此得出第n个等式:an=;(2)将每一个等式化简即可求得答案【详解】解:(1)第1个等式:,第2个等式:,第3个等式:,第4个等式:,第n个等式:an=;(2)a1+a2+a3+an=(=故答案为;【点睛】此题考查数字的变化规律以及分母有理化,要求学生首先分析题意,找到规律,并进行推导得出答案20、 (1) y(x)22;(2)POE的面积为或;(3)点Q的坐标为(,)或(,2)或(,2)【解析】(1)将点B坐标代入解析式求得a的值即可得;(2)由OPM=MAF知OPAF,据此证OPEFAE得=,即OP=FA,设点P(t,-2t-1),列出关于t的方程解之可得;(3)分点Q在AB上运动、点Q在BC上运动且Q在y轴左侧、点Q在BC上运动且点Q在y轴右侧这三种情况分类讨论即可得【详解】解:(1)把点B(,2)代入ya(x)22,解得a1,抛物线的表达式为y(x)22,(2)由y(x)22知A(,2),设直线AB表达式为ykxb,代入点A,B的坐标得,解得,直线AB的表达式为y2x1,易求E(0,1),F(0,),M(,0),若OPMMAF,OPAF,OPEFAE,OPFA ,设点P(t,2t1),则,解得t1,t2,由对称性知,当t1时,也满足OPMMAF,t1,t2都满足条件,POE的面积OE·|t|,POE的面积为或;(3)如图,若点Q在AB上运动,过N作直线RSy轴,交QR于点R,交NE的延长线于点S,设Q(a,2a1),则NEa,QN2a.由翻折知QNQN2a,NENEa,由QNEN90°易知QRNNSE,即=2,QR2,ES ,由NEESNSQR可得a2,解得a,Q(,),如图,若点Q在BC上运动,且Q在y轴左侧,过N作直线RSy轴,交BC于点R,交NE的延长线于点S.设NEa,则NEa.易知RN2,SN1,QNQN3,QR,SEa.在RtSEN中,(a)212a2,解得a,Q(,2),如图,若点Q在BC上运动,且点Q在y轴右侧,过N作直线RSy轴,交BC于点R,交NE的延长线于点S.设NEa,则NEa.易知RN2,SN1,QNQN3,QR,SEa.在RtSEN中,(a)212a2,解得a,Q(,2)综上,点Q的坐标为(,)或(,2)或(,2)【点睛】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、翻折变换的性质及勾股定理等知识点21、【解析】先把分式方程化为整式方程,解整式方程求得x的值,检验即可得分式方程的解.【详解】原方程变形为,方程两边同乘以(2x1),得2x51(2x1),解得 检验:把代入(2x1),(2x1)0,是原方程的解,原方程的【点睛】本题考查了分式方程的解法,把分式方程化为整式方程是解决问题的关键,解分式方程时,要注意验根.22、(1);(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】(1)可用待定系数法来确定y与x之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x的值,根据增减性,求出x的取值范围【详解】(1)由题意得: 故y与x之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700240,解得x46,设利润为w=(x-30)y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2+4000,-100,x50时,w随x的增大而增大,x=46时,w大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x1=55,x2=45,如图所示,由图象得:当45x55时,捐款后每天剩余利润不低于3600元【点睛】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点23、(1)10%;(2)方案一更优惠,小颖选择方案一:打9.8折购买;(3)不会跌破4800元/平方米,理由见解析【解析】(1)设3、4两月平均每月下调的百分率为x,根据下降率公式列方程解方程求出答案;(2)分别计算出方案一与方案二的费用相比较即可;(3)根据(1)的答案计算出6月份的价格即可得到答案.【详解】(1)设3、4两月平均每月下调的百分率为x,由题意得:7500(1x)26075,解得:x10.110%,x21.9(舍),答:3、4两月平均每月下调的百分率是10%;(2)方案一:6075×100×0.98595350(元),方案二:6075×100100×1.5×24603900(元),595350603900,方案一更优惠,小颖选择方案一:打9.8折购买;(3)不会跌破4800元/平方米因为由(1)知:平均每月下调的百分率是10%,所以:6075(110%)24920.75(元/平方米),4920.754800,6月份该楼盘商品房成交均价不会跌破4800元/平方米【点睛】此题考查一元二次方程的实际应用,方案比较计算,正确理解题意并列出方程解答问题是解题的关键.24、每件衬衫应降价1元.【解析】利用衬衣平均每天售出的件数×每件盈利=每天销售这种衬衣利润列出方程解答即可.【详解】解:设每件衬衫应降价x元.根据题意,得 (40-x)(1+2x)=110,整理,得x2-30x+10=0,解得x1=10,x2=1“扩大销售量,减少库存”,x1=10应舍去,x=1.答:每件衬衫应降价1元.【点睛】此题主要考查了一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润是解题关键.