2022-2023学年广东省大埔县重点中学中考三模数学试题含解析.doc
-
资源ID:87069262
资源大小:676.50KB
全文页数:19页
- 资源格式: DOC
下载积分:20金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022-2023学年广东省大埔县重点中学中考三模数学试题含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1如图,AD,CE分别是ABC的中线和角平分线若AB=AC,CAD=20°,则ACE的度数是()A20°B35°C40°D70°2实数4的倒数是()A4BC4D3方程x23x0的根是( )Ax0Bx3C,D,4如图1,点P从ABC的顶点B出发,沿BCA匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则ABC的面积是( )A10B12C20D245抛物线的顶点坐标是( )A(2,3)B(-2,3)C(2,-3)D(-2,-3)6有一种球状细菌的直径用科学记数法表示为2.16×103米,则这个直径是()A216000米B0.00216米C0.000216米D0.0000216米7已知x=2,则代数式(7+4)x2+(2+)x+ 的值是()A0BC2+D28估计÷2的运算结果在哪两个整数之间()A0和1B1和2C2和3D3和49老师随机抽查了学生读课外书册数的情况,绘制成条形图和不完整的扇形图,其中条形图被墨迹遮盖了一部分,则条形图中被遮盖的数是()A5B9C15D2210如图,菱形ABCD中,E. F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是( )A12B16C20D24二、填空题(本大题共6个小题,每小题3分,共18分)112017我市社会消费品零售总额达18800000000元,把18800000000用科学记数法表示为_12 “若实数a,b,c满足abc,则a+bc”,能够说明该命题是假命题的一组a,b,c的值依次为_13在一个不透明的袋子里装有除颜色外其它均相同的红、蓝小球各一个,每次从袋中摸出一个小球记下颜色后再放回,摸球三次,“仅有一次摸到红球”的概率是_14在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a),如图,若曲线y(x0)与此正方形的边有交点,则a的取值范围是_15已知一次函数y=ax+b的图象如图所示,根据图中信息请写出不等式ax+b2的解集为_16因式分解=_三、解答题(共8题,共72分)17(8分)已知关于x的一元二次方程x2+2(m1)x+m230有两个不相等的实数根(1)求m的取值范围;(2)若m为非负整数,且该方程的根都是无理数,求m的值18(8分)已知:ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度)画出ABC向下平移4个单位长度得到的A1B1C1,点C1的坐标是 ;以点B为位似中心,在网格内画出A2B2C2,使A2B2C2与ABC位似,且位似比为2:1,点C2的坐标是 ;A2B2C2的面积是 平方单位19(8分)计算:÷+8×21(+1)0+2sin60°20(8分)已知关于的方程有两个实数根.求的取值范围;若,求的值;21(8分)如图,已知ABC内接于O,BC交直径AD于点E,过点C作AD的垂线交AB的延长线于点G,垂足为F连接OC(1)若G=48°,求ACB的度数;(1)若AB=AE,求证:BAD=COF;(3)在(1)的条件下,连接OB,设AOB的面积为S1,ACF的面积为S1若tanCAF=,求的值 22(10分)为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图种类ABCDE出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有 人,其中选择B类的人数有 人;(2)在扇形统计图中,求A类对应扇形圆心角的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数23(12分)中华文明,源远流长;中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:成绩x/分频数频率50x60100.0560x70300.1570x8040n80x90m0.3590x100500.25请根据所给信息,解答下列问题:m ,n ;请补全频数分布直方图;若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?24为了掌握我市中考模拟数学试题的命题质量与难度系数,命题教师赴我市某地选取一个水平相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩(得分为整数,满分为160分)分为5组:第一组85100;第二组100115;第三组115130;第四组130145;第五组145160,统计后得到如图1和如图2所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:(1)本次调查共随机抽取了该年级多少名学生?并将频数分布直方图补充完整;(2)若将得分转化为等级,规定:得分低于100分评为“D”,100130分评为“C”,130145分评为“B”,145160分评为“A”,那么该年级1600名学生中,考试成绩评为“B”的学生大约有多少名?(3)如果第一组有两名女生和两名男生,第五组只有一名是男生,针对考试成绩情况,命题教师决定从第一组、第五组分别随机选出一名同学谈谈做题的感想,请你用列表或画树状图的方法求出所选两名学生刚好是一名女生和一名男生的概率参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】先根据等腰三角形的性质以及三角形内角和定理求出CAB=2CAD=40°,B=ACB=(180°-CAB)=70°再利用角平分线定义即可得出ACE=ACB=35°【详解】AD是ABC的中线,AB=AC,CAD=20°,CAB=2CAD=40°,B=ACB=(180°-CAB)=70°CE是ABC的角平分线,ACE=ACB=35°故选B【点睛】本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出ACB=70°是解题的关键2、B【解析】根据互为倒数的两个数的乘积是1,求出实数4的倒数是多少即可【详解】解:实数4的倒数是:1÷4=故选:B【点睛】此题主要考查了一个数的倒数的求法,要熟练掌握,解答此题的关键是要明确:互为倒数的两个数的乘积是13、D【解析】先将方程左边提公因式x,解方程即可得答案【详解】x23x0,x(x3)0,x10,x23,故选:D【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键4、B【解析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC的长度【详解】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,此时BP最小,即BPAC,BP=4,由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,PA=3,AC=6,ABC的面积为:×4×6=12.故选:B.【点睛】本题考查动点问题的函数图象,解题关键是注意结合图象求出BC与AC的长度,本题属于中等题型5、A【解析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标【详解】解:y=(x-2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3)故选A【点睛】此题主要考查了二次函数的性质,关键是熟记:顶点式y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=h6、B【解析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】2.16×103米0.00216米故选B【点睛】考查了用科学记数法表示较小的数,一般形式为a×10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定7、C【解析】把x的值代入代数式,运用完全平方公式和平方差公式计算即可【详解】解:当x=2时,(7+4)x2+(2+)x+ (7+4)(2)2+(2+)(2)+ (7+4)(7-4)+1+ 49-48+1+2+故选:C.【点睛】此题考查二次根式的化简求值,关键是代入后利用完全平方公式和平方差公式进行计算8、D【解析】先估算出的大致范围,然后再计算出÷2的大小,从而得到问题的答案【详解】253231,51原式=2÷2=2,3÷22故选D【点睛】本题主要考查的是二次根式的混合运算,估算无理数的大小,利用夹逼法估算出的大小是解题的关键9、B【解析】条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数【详解】课外书总人数:6÷25%24(人),看5册的人数:245649(人),故选B【点睛】本题考查了统计图与概率,熟练掌握条形统计图与扇形统计图是解题的关键10、D【解析】根据三角形的中位线平行于第三边并且等于第三边的一半求出,再根据菱形的周长公式列式计算即可得解.【详解】、分别是、的中点,是的中位线,菱形的周长故选:.【点睛】本题主要考查了菱形的四边形都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、1.88×1【解析】科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:把18800000000用科学记数法表示为1.88×1,故答案为:1.88×1【点睛】此题考查了科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值12、答案不唯一,如1,2,3;【解析】分析:设a,b,c是任意实数若a<b<c,则a+b<c”是假命题,则若a<b<c,则a+bc”是真命题,举例即可,本题答案不唯一详解:设a,b,c是任意实数若a<b<c,则a+b<c”是假命题,则若a<b<c,则a+bc”是真命题,可设a,b,c的值依次1,2,3,(答案不唯一),故答案为1,2,3.点睛:本题考查了命题的真假,举例说明即可,13、【解析】摸三次有可能有:红红红、红红蓝、红蓝红、红蓝蓝、蓝红红、蓝红蓝、蓝蓝红、蓝蓝蓝共计8种可能,其中仅有一个红坏的有:红蓝蓝、蓝红蓝、蓝蓝红共计3种,所以“仅有一次摸到红球”的概率是.故答案是:.14、 【解析】因为A点的坐标为(a,a),则C(a1,a1),根据题意只要分别求出当A点或C点在曲线上时a的值即可得到答案.【详解】解:A点的坐标为(a,a),C(a1,a1),当C在双曲线y=时,则a1=,解得a=+1;当A在双曲线y=时,则a=,解得a=,a的取值范围是a+1故答案为a+1【点睛】本题主要考查反比例函数与几何图形的综合问题,解此题的关键在于根据题意找到关键点,然后将关键点的坐标代入反比例函数求得确定值即可.15、x1【解析】试题分析:根据题意得当x1时,ax+b2,即不等式ax+b2的解集为x1故答案为x1考点: 一次函数与一元一次不等式16、【解析】解:=,故答案为:三、解答题(共8题,共72分)17、(1)m2;(2)m=1【解析】(1)利用方程有两个不相等的实数根,得=2(m-1)2-4(m2-3)=-8m+23,然后解不等式即可;(2)先利用m的范围得到m=3或m=1,再分别求出m=3和m=1时方程的根,然后根据根的情况确定满足条件的m的值【详解】(1)=2(m1)24(m23)=8m+2方程有两个不相等的实数根,3即8m+2>3 解得 m2;(2)m2,且 m 为非负整数,m=3 或 m=1,当 m=3 时,原方程为 x2-2x-3=3,解得 x1=3,x2=1(不符合题意舍去), 当 m=1 时,原方程为 x22=3,解得 x1=,x2= , 综上所述,m=1【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=3(a3)的根与=b2-4ac有如下关系:当3时,方程有两个不相等的实数根;当=3时,方程有两个相等的实数根;当3时,方程无实数根18、(1)(2,2);(2)(1,0);(3)1【解析】试题分析:(1)根据平移的性质得出平移后的图从而得到点的坐标;(2)根据位似图形的性质得出对应点位置,从而得到点的坐标;(3)利用等腰直角三角形的性质得出A2B2C2的面积试题解析:(1)如图所示:C1(2,2);故答案为(2,2);(2)如图所示:C2(1,0);故答案为(1,0);(3)=20,=20,=40,A2B2C2是等腰直角三角形,A2B2C2的面积是:××=1平方单位故答案为1考点:1、平移变换;2、位似变换;3、勾股定理的逆定理19、6+【解析】利用负整数指数幂、零指数幂的意义和特殊角的三角函数值进行计算【详解】解:原式=+8×1+2×=3+41+=6+【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍20、(1);(2)k3【解析】(1)依题意得0,即2(k1)24k20;(2)依题意x1x22(k1),x1·x2k2 以下分两种情况讨论:当x1x20时,则有x1x2x1·x21,即2(k1)k21;当x1x20时,则有x1x2(x1·x21),即2(k1)(k21);【详解】解:(1)依题意得0,即2(k1)24k20 解得 (2)依题意x1x22(k1),x1·x2k2 以下分两种情况讨论:当x1x20时,则有x1x2x1·x21,即2(k1)k21解得k1k21k1k21不合题意,舍去当x1x20时,则有x1x2(x1·x21),即2(k1)(k21)解得k11,k23k3 综合、可知k3【点睛】一元二次方程根与系数关系,根判别式.21、(1)48°(1)证明见解析(3) 【解析】(1)连接CD,根据圆周角定理和垂直的定义可得结论;(1)先根据等腰三角形的性质得:ABE=AEB,再证明BCG=DAC,可得 ,则所对的圆周角相等,根据同弧所对的圆周角和圆心角的关系可得结论;(3)过O作OGAB于G,证明COFOAG,则OG=CF=x,AG=OF,设OF=a,则OA=OC=1x-a,根据勾股定理列方程得:(1x-a)1=x1+a1,则a=x,代入面积公式可得结论【详解】(1)连接CD,AD是O的直径,ACD=90°,ACB+BCD=90°,ADCG,AFG=G+BAD=90°,BAD=BCD,ACB=G=48°;(1)AB=AE,ABE=AEB,ABC=G+BCG,AEB=ACB+DAC,由(1)得:G=ACB,BCG=DAC,AD是O的直径,ADPC,BAD=1DAC,COF=1DAC,BAD=COF;(3)过O作OGAB于G,设CF=x,tanCAF= ,AF=1x,OC=OA,由(1)得:COF=OAG,OFC=AGO=90°,COFOAG,OG=CF=x,AG=OF,设OF=a,则OA=OC=1xa,RtCOF中,CO1=CF1+OF1,(1xa)1=x1+a1,a=x,OF=AG=x,OA=OB,OGAB,AB=1AG=x,【点睛】圆的综合题,考查了三角形的面积、垂径定理、角平分线的性质、三角形全等的性质和判定以及解直角三角形,解题的关键是:(1)根据圆周角定理找出ACB+BCD=90°;(1)根据外角的性质和圆的性质得:;(3)利用三角函数设未知数,根据勾股定理列方程解决问题22、(1)800,240;(2)补图见解析;(3)9.6万人【解析】试题分析:(1)由C类别人数及其百分比可得总人数,总人数乘以B类别百分比即可得;(2)根据百分比之和为1求得A类别百分比,再乘以360°和总人数可分别求得;(3)总人数乘以样本中A、B、C三类别百分比之和可得答案试题解析:(1)本次调查的市民有200÷25%=800(人),B类别的人数为800×30%=240(人),故答案为800,240;(2)A类人数所占百分比为1(30%+25%+14%+6%)=25%,A类对应扇形圆心角的度数为360°×25%=90°,A类的人数为800×25%=200(人),补全条形图如下:(3)12×(25%+30%+25%)=9.6(万人),答:估计该市“绿色出行”方式的人数约为9.6万人考点:1、条形统计图;2、用样本估计总体;3、统计表;4、扇形统计图23、(1)70,0.2(2)70(3)750【解析】(1)根据题意和统计表中的数据可以求得m、n的值;(2)根据(1)中求得的m的值,从而可以将条形统计图补充完整;(3)根据统计表中的数据可以估计该校参加这次比赛的3000名学生中成绩“优”等约有多少人【详解】解:(1)由题意可得,m200×0.3570,n40÷2000.2,故答案为70,0.2;(2)由(1)知,m70,补全的频数分布直方图,如下图所示;(3)由题意可得,该校参加这次比赛的3000名学生中成绩“优”等约有:3000×0.25750(人),答:该校参加这次比赛的3000名学生中成绩“优”等约有750人【点睛】本题考查频数分布直方图、频数分布表、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答24、(1)50(2)420(3)P=【解析】试题分析:(1)首先根据题意得:本次调查共随机抽取了该年级学生数为:20÷40%=50(名);则可求得第五组人数为:50482014=4(名);即可补全统计图;(2)由题意可求得130145分所占比例,进而求出答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两名学生刚好是一名女生和一名男生的情况,再利用概率公式求解即可求得答案试题解析:(1)根据题意得:本次调查共随机抽取了该年级学生数为:20÷40%=50(名);则第五组人数为:50482014=4(名);如图:(2)根据题意得:考试成绩评为“B”的学生大约有×1600=448(名),答:考试成绩评为“B”的学生大约有448名;(3)画树状图得:共有16种等可能的结果,所选两名学生刚好是一名女生和一名男生的有8种情况,所选两名学生刚好是一名女生和一名男生的概率为: =考点:1、树状图法与列表法求概率的知识,2、直方图与扇形统计图的知识视频