2022-2023学年广东省珠海市香洲区前山中学中考数学最后一模试卷含解析.doc
-
资源ID:87069408
资源大小:619KB
全文页数:19页
- 资源格式: DOC
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022-2023学年广东省珠海市香洲区前山中学中考数学最后一模试卷含解析.doc
2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1已知am=2,an=3,则a3m+2n的值是()A24B36C72D62 “保护水资源,节约用水”应成为每个公民的自觉行为下表是某个小区随机抽查到的10户家庭的月用水情况,则下列关于这10户家庭的月用水量说法错误的是()月用水量(吨)4569户数(户)3421A中位数是5吨B众数是5吨C极差是3吨D平均数是5.3吨3下列图形中,是轴对称图形的是( )ABCD4如图,将OAB绕O点逆时针旋转60°得到OCD,若OA4,AOB35°,则下列结论错误的是()ABDO60°BBOC25°COC4DBD45如图,在O中,AE是直径,半径OC垂直于弦AB于D,连接BE,若AB=2,CD=1,则BE的长是A5B6C7D86古希腊著名的毕达哥拉斯学派把1,3,6,10这样的数称为“三角形数”,而把1,4,9,16这样的数称为“正方形数”从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和下列等式中,符合这一规律的是()A133+10B259+16C3615+21D4918+317若x2是关于x的一元二次方程x2axa20的一个根,则a的值为( )A1或4B1或4C1或4D1或48如图,两个一次函数图象的交点坐标为,则关于x,y的方程组的解为( ) ABCD9如图,四边形ABCD内接于O,F是上一点,且,连接CF并延长交AD的延长线于点E,连接AC若ABC=105°,BAC=25°,则E的度数为( )A45°B50°C55°D60°10若关于x的不等式组恰有3个整数解,则字母a的取值范围是()Aa1B2a1Ca1D2a1二、填空题(本大题共6个小题,每小题3分,共18分)11如图,一组平行横格线,其相邻横格线间的距离都相等,已知点A、B、C、D、O都在横格线上,且线段AD,BC交于点O,则AB:CD等于_12分解因式:= 13如图,在正方形ABCD中,BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:BE=2AE;DFPBPH;PFDPDB;DP2=PHPC其中正确的是_(填序号)14如图,ABC中,AB=AC,D是AB上的一点,且AD=AB,DFBC,E为BD的中点若EFAC,BC=6,则四边形DBCF的面积为_15分解因式:x2yxy2=_16一个圆锥的高为3,侧面展开图是半圆,则圆锥的侧面积是_三、解答题(共8题,共72分)17(8分)如图,在平面直角坐标系中,正方形的边长为,顶点、分别在轴、轴的正半轴,抛物线经过、两点,点为抛物线的顶点,连接、求此抛物线的解析式求此抛物线顶点的坐标和四边形的面积18(8分)如图,在ABC中,点D是AB边的中点,点E是CD边的中点,过点C作CFAB交AE的延长线于点F,连接BF.求证:DB=CF;(2)如果AC=BC,试判断四边形BDCF的形状,并证明你的结论.19(8分)在RtABC中,C=90°,B=30°,AB=10,点D是射线CB上的一个动点,ADE是等边三角形,点F是AB的中点,连接EF(1)如图,点D在线段CB上时,求证:AEFADC;连接BE,设线段CD=x,BE=y,求y2x2的值;(2)当DAB=15°时,求ADE的面积20(8分)解分式方程:21(8分) “千年古都,大美西安”某校数学兴趣小组就“最想去的西安旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,(景点对应的名称分别是:A:大雁塔 B:兵马俑 C:陕西历史博物馆 D:秦岭野生动物园 E:曲江海洋馆)下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B”的学生人数22(10分)如图,平行四边形ABCD的对角线AC,BD相交于点O,延长CD到E,使DECD,连接AE(1)求证:四边形ABDE是平行四边形;(2)连接OE,若ABC60°,且ADDE4,求OE的长23(12分)为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天甲、乙两工程队每天能改造道路的长度分别是多少米?若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?24如图,在一条河的北岸有两个目标M、N,现在位于它的对岸设定两个观测点A、B已知ABMN,在A点测得MAB60°,在B点测得MBA45°,AB600米 (1)求点M到AB的距离;(结果保留根号)(2)在B点又测得NBA53°,求MN的长(结果精确到1米)(参考数据:1.732,sin53°0.8,cos53°0.6,tan53°1.33,cot53°0.75)参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】试题解析:am=2,an=3,a3m+2n=a3ma2n=(am)3(an)2=23×32=8×9=1故选C.2、C【解析】根据中位数、众数、极差和平均数的概念,对选项一一分析,即可选择正确答案【详解】解:A、中位数(5+5)÷25(吨),正确,故选项错误;B、数据5吨出现4次,次数最多,所以5吨是众数,正确,故选项错误;C、极差为94=5(吨),错误,故选项正确;D、平均数=(4×3+5×4+6×2+9×1)÷10=5.3,正确,故选项错误故选:C【点睛】此题主要考查了平均数、中位数、众数和极差的概念要掌握这些基本概念才能熟练解题3、B【解析】分析:根据轴对称图形的概念求解详解:A、不是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选B点睛:本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形4、D【解析】由OAB绕O点逆时针旋转60°得到OCD知AOC=BOD=60°,AO=CO=4、BO=DO,据此可判断C;由AOC、BOD是等边三角形可判断A选项;由AOB=35°,AOC=60°可判断B选项,据此可得答案【详解】解:OAB绕O点逆时针旋转60°得到OCD,AOC=BOD=60°,AO=CO=4、BO=DO,故C选项正确;则AOC、BOD是等边三角形,BDO=60°,故A选项正确;AOB=35°,AOC=60°,BOC=AOC-AOB=60°-35°=25°,故B选项正确.故选D【点睛】本题考查旋转的性质,解题的关键是掌握旋转的性质:对应点到旋转中心的距离相等对应点与旋转中心所连线段的夹角等于旋转角旋转前、后的图形全等及等边三角形的判定和性质5、B【解析】根据垂径定理求出AD,根据勾股定理列式求出半径 ,根据三角形中位线定理计算即可【详解】解:半径OC垂直于弦AB,AD=DB= AB= 在RtAOD中,OA2=(OC-CD)2+AD2,即OA2=(OA-1)2+( )2,解得,OA=4OD=OC-CD=3,AO=OE,AD=DB,BE=2OD=6故选B【点睛】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键6、C【解析】本题考查探究、归纳的数学思想方法题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为n(n+1)和(n+1)(n+2),所以由正方形数可以推得n的值,然后求得三角形数的值【详解】A中13不是“正方形数”;选项B、D中等式右侧并不是两个相邻“三角形数”之和故选:C【点睛】此题是一道找规律的题目,这类题型在中考中经常出现对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的7、C【解析】试题解析:x=-2是关于x的一元二次方程的一个根,(-2)2+a×(-2)-a2=0,即a2+3a-2=0,整理,得(a+2)(a-1)=0,解得 a1=-2,a2=1即a的值是1或-2故选A点睛:一元二次方程的解的定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根8、A【解析】根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案【详解】解:直线y1=k1x+b1与y2=k2x+b2的交点坐标为(2,4),二元一次方程组的解为故选A.【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式函数图象交点坐标为两函数解析式组成的方程组的解9、B【解析】先根据圆内接四边形的性质求出ADC的度数,再由圆周角定理得出DCE的度数,根据三角形外角的性质即可得出结论【详解】四边形ABCD内接于O,ABC=105°,ADC=180°ABC=180°105°=75°,BAC=25°,DCE=BAC=25°,E=ADCDCE=75°25°=50°【点睛】本题考查圆内接四边形的性质,圆周角定理.圆内接四边形对角互补.在同圆或等圆中,同弧或等弧所对的圆心角相等,而同弧所对的圆周角等于圆心角的一半,所以在同圆或等圆中,同弧或等弧所对的圆周角相等.10、B【解析】根据“同大取大,同小取小,大小小大取中间,大大小小无解”即可求出字母a的取值范围.【详解】解:x的不等式组恰有3个整数解,整数解为1,0,-1,-2a-1.故选B.【点睛】本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.二、填空题(本大题共6个小题,每小题3分,共18分)11、2:1【解析】过点O作OEAB于点E,延长EO交CD于点F,可得OFCD,由AB/CD,可得AOBDOC,根据相似三角形对应高的比等于相似比可得,由此即可求得答案.【详解】如图,过点O作OEAB于点E,延长EO交CD于点F,AB/CD,OFD=OEA=90°,即OFCD,AB/CD,AOBDOC,又OEAB,OFCD,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,=,故答案为:2:1【点睛】本题考查了相似三角形的的判定与性质,熟练掌握相似三角形对应高的比等于相似比是解本题的关键.12、a(a+2)(a-2)【解析】13、【解析】由正方形的性质和相似三角形的判定与性质,即可得出结论【详解】BPC是等边三角形,BP=PC=BC,PBC=PCB=BPC=60°,在正方形ABCD中,AB=BC=CD,A=ADC=BCD=90°ABE=DCF=30°,BE=2AE;故正确;PC=CD,PCD=30°,PDC=75°,FDP=15°,DBA=45°,PBD=15°,FDP=PBD,DFP=BPC=60°,DFPBPH;故正确;FDP=PBD=15°,ADB=45°,PDB=30°,而DFP=60°,PFDPDB,PFD与PDB不会相似;故错误;PDH=PCD=30°,DPH=DPC,DPHCPD,DP2=PHPC,故正确;故答案是:【点睛】本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理14、2【解析】解:如图,过D点作DGAC,垂足为G,过A点作AHBC,垂足为H,AB=AC,点E为BD的中点,且AD=AB,设BE=DE=x,则AD=AF=1xDGAC,EFAC,DGEF,即,解得DFBC,ADFABC,即,解得DF=1又DFBC,DFG=C,RtDFGRtACH,即,解得在RtABH中,由勾股定理,得又ADFABC,故答案为:215、xy(xy)【解析】原式=xy(xy)故答案为xy(xy)16、18【解析】解:设圆锥的半径为 ,母线长为 .则 解得 三、解答题(共8题,共72分)17、 ;【解析】(1)由正方形的性质可求得B、C的坐标,代入抛物线解析式可求得b、c的值,则可求得抛物线的解析式;(2)把抛物线解析式化为顶点式可求得D点坐标,再由S四边形ABDC=SABC+SBCD可求得四边形ABDC的面积【详解】由已知得:,把与坐标代入得:,解得:,则解析式为;,抛物线顶点坐标为,则【点睛】二次函数的综合应用解题的关键是:在(1)中确定出B、C的坐标是解题的关键,在(2)中把四边形转化成两个三角形18、 (1)证明见解析;(2)四边形BDCF是矩形,理由见解析.【解析】(1)证明:CFAB,DAECFE又DECE,AEDFEC,ADEFCE,ADCFADDB,DBCF(2)四边形BDCF是矩形证明:由(1)知DBCF,又DBCF,四边形BDCF为平行四边形ACBC,ADDB,CDAB四边形BDCF是矩形19、(1)证明见解析;25;(2)为或50+1【解析】(1)在直角三角形ABC中,由30°所对的直角边等于斜边的一半求出AC的长,再由F为AB中点,得到AC=AF=5,确定出三角形ADE为等边三角形,利用等式的性质得到一对角相等,再由AD=AE,利用SAS即可得证;由全等三角形对应角相等得到AEF为直角,EF=CD=x,在三角形AEF中,利用勾股定理即可列出y关于x的函数解析式;(2)分两种情况考虑:当点在线段CB上时;当点在线段CB的延长线上时,分别求出三角形ADE面积即可【详解】(1)、证明:在RtABC中,B=30°,AB=10,CAB=60°,AC=AB=5,点F是AB的中点,AF=AB=5,AC=AF,ADE是等边三角形,AD=AE,EAD=60°, CAB=EAD,即CAD+DAB=FAE+DAB,CAD=FAE, AEFADC(SAS);AEFADC,AEF=C=90°,EF=CD=x,又点F是AB的中点,AE=BE=y,在RtAEF中,勾股定理可得:y2=25+x2,y2x2=25.(2)当点在线段CB上时, 由DAB=15°,可得CAD=45°,ADC是等腰直角三角形,AD2=50,ADE的面积为;当点在线段CB的延长线上时, 由DAB=15°,可得ADB=15°,BD=BA=10,在RtACD中,勾股定理可得AD2=200+100, 综上所述,ADE的面积为或【点睛】此题考查了勾股定理,全等三角形的判定与性质,以及等边三角形的性质,熟练掌握勾股定理是解本题的关键20、无解【解析】首先进行去分母,将分式方程转化为整式方程,然后按照整式方程的求解方法进行求解,最后对所求的解进行检验,看是否能使分母为零【详解】解:两边同乘以(x+2)(x2)得:x(x+2)(x+2)(x2)=8去括号,得:+2x+4=8 移项、合并同类项得:2x=4 解得:x=2经检验,x=2是方程的增根 方程无解【点睛】本题考查解分式方程,注意分式方程结果要检验21、(1)40;(2)想去D景点的人数是8,圆心角度数是72°(3)280.【解析】(1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;(2)先计算出最想去D景点的人数,再补全条形统计图,然后用360°乘以最想去D景点的人数所占的百分比即可得到扇形统计图中表示“醉美旅游景点D”的扇形圆心角的度数;(3)用800乘以样本中最想去B景点的人数所占的百分比即可【详解】(1)被调查的学生总人数为8÷20%=40(人);(2)最想去D景点的人数为40-8-14-4-6=8(人),补全条形统计图为:扇形统计图中表示“醉美旅游景点D”的扇形圆心角的度数为×360°=72°;(3)800×=280,所以估计“醉美旅游景点B“的学生人数为280人【点睛】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来从条形图可以很容易看出数据的大小,便于比较也考查了扇形统计图和利用样本估计总体22、 (1)见解析;(2)2.【解析】(1)四边形ABCD是平行四边形,由平行四边形的性质,可得AB=DE, AB/DE ,则四边形ABDE是平行四边形;(2)因为AD=DE=1,则AD=AB=1,四边形ABCD是菱形,由菱形的性质及解直角三角形可得AO=ABsinABO=2,BO=ABcosABO=2, BD=1 ,则AE=BD,利用勾股定理可得OE【详解】(1)证明:四边形ABCD是平行四边形,ABCD,ABCDDECD,ABDE四边形ABDE是平行四边形;(2)ADDE1,ADAB1ABCD是菱形,ABBC,ACBD,又ABC60°,ABO30°在RtABO中,四边形ABDE是平行四边形,AEBD,又ACBD,ACAE在RtAOE中,【点睛】此题考查平行四边形的性质及判断,考查菱形的判断及性质,及解直角三角形,解题关键在于掌握判定定理和利用三角函数进行计算.23、(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米(2)10天.【解析】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m天,则安排乙队工作天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论【详解】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据题意得:,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,x=×40=60,答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米;(2)设安排甲队工作m天,则安排乙队工作天,根据题意得:7m+5×145,解得:m10,答:至少安排甲队工作10天【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式24、 (1) ; (2)95m.【解析】(1)过点M作MDAB于点D,易求AD的长,再由BD=MD可得BD的长,即M到AB的距离;(2)过点N作NEAB于点E,易证四边形MDEN为平行四边形,所以ME的长可求出,再根据MN=AB-AD-BE计算即可【详解】解:(1)过点M作MDAB于点D,MDAB,MDA=MDB=90°,MAB=60°,MBA=45°,在RtADM中,;在RtBDM中,BDMD,AB=600m,AD+BD=600m,AD+,AD(300)m,BD=MD=(900-300),点M到AB的距离(900-300)(2)过点N作NEAB于点E,MDAB,NEAB,MDNE,ABMN,四边形MDEN为平行四边形,NE=MD=(900-300),MN=DE,NBA=53°,在RtNEB中,BEm,MN=AB-AD-BE【点睛】考查了解直角三角形的应用,通过解直角三角形能解决实际问题中的很多有关测量问题,根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案是解题的关键