2022-2023学年广州市番禹区重点中学中考试题猜想数学试卷含解析.doc
-
资源ID:87069422
资源大小:806KB
全文页数:22页
- 资源格式: DOC
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022-2023学年广州市番禹区重点中学中考试题猜想数学试卷含解析.doc
2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1我市某小区开展了“节约用水为环保作贡献”的活动,为了解居民用水情况,在小区随机抽查了10户家庭的月用水量,结果如下表:月用水量(吨)8910户数262则关于这10户家庭的月用水量,下列说法错误的是()A方差是4B极差是2C平均数是9D众数是92已知电流I(安培)、电压U(伏特)、电阻R(欧姆)之间的关系为,当电压为定值时,I关于R的函数图象是( )ABCD3下列计算正确的是()A3a2a1Ba2+a5a7C(ab)3ab3Da2a4a64下列四个几何体中,主视图与左视图相同的几何体有()A1个B2个C3个D4个5已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为( )A8或10B8C10D6或126如图,点E是矩形ABCD的边AD的中点,且BEAC于点F,则下列结论中错误的是()AAF=CFBDCF=DFCC图中与AEF相似的三角形共有5个DtanCAD=7一次函数y1kx+12k(k0)的图象记作G1,一次函数y22x+3(1x2)的图象记作G2,对于这两个图象,有以下几种说法:当G1与G2有公共点时,y1随x增大而减小;当G1与G2没有公共点时,y1随x增大而增大;当k2时,G1与G2平行,且平行线之间的距离为下列选项中,描述准确的是()A正确,错误B正确,错误C正确,错误D都正确8若代数式2x2+3x1的值为1,则代数式4x2+6x1的值为()A3B1C1D39如图,小明从A处出发沿北偏西30°方向行走至B处,又沿南偏西50°方向行走至C处,此时再沿与出发时一致的方向行走至D处,则BCD的度数为() A100°B80°C50°D20°10郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:成绩(单位:米)2.102.202.252.302.352.402.452.50人数23245211则下列叙述正确的是()A这些运动员成绩的众数是 5B这些运动员成绩的中位数是 2.30C这些运动员的平均成绩是 2.25D这些运动员成绩的方差是 0.0725二、填空题(本大题共6个小题,每小题3分,共18分)11对于函数,若x2,则y_3(填“”或“”)12如图,直线与轴交于点,与轴交于点,点在轴的正半轴上,过点作轴交直线于点,若反比例函数的图象经过点,则的值为_13已知,那么_143的绝对值是_15若不等式组的解集为,则_.16如图,ABCD中,M、N是BD的三等分点,连接CM并延长交AB于点E,连接EN并延长交CD于点F,以下结论:E为AB的中点;FC=4DF;SECF=;当CEBD时,DFN是等腰三角形其中一定正确的是_三、解答题(共8题,共72分)17(8分)甲、乙两人在玩转盘游戏时,把两个可以自由转动的转盘A,B都分成3等份的扇形区域,并在每一小区域内标上数字(如图所示),游戏规则:同时转动两个转盘,当转盘停止后,若指针所指两个区域的数字之和为3的倍数,则甲获胜;若指针所指两个区域的数字之和为4的倍数,则乙获胜如果指针落在分割线上,则需要重新转动转盘请问这个游戏对甲、乙双方公平吗?说明理由18(8分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要时间与原计划生产450台机器所需时间相同现在平均每天生产多少台机器;生产3000台机器,现在比原计划提前几天完成19(8分)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息已知甲先出发4分钟,在整个步行过程中,甲、乙两人间的距离y(米)与甲出发的时间x(分)之间的关系如图中折线OA-AB-BC-CD所示(1)求线段AB的表达式,并写出自变量x的取值范围;(2)求乙的步行速度;(3)求乙比甲早几分钟到达终点?20(8分)先化简,再求值:1+÷(1),其中x=2cos30°+tan45°21(8分)已知,抛物线(为常数)(1)抛物线的顶点坐标为( , )(用含的代数式表示);(2)若抛物线经过点且与图象交点的纵坐标为3,请在图1中画出抛物线的简图,并求的函数表达式;(3)如图2,规矩的四条边分别平行于坐标轴,若抛物线经过两点,且矩形在其对称轴的左侧,则对角线的最小值是 22(10分)已知函数的图象与函数的图象交于点.(1)若,求的值和点P的坐标;(2)当时,结合函数图象,直接写出实数的取值范围.23(12分)如图,在ABC中,ABC=90°,D,E分别为AB,AC的中点,延长DE到点F,使EF=2DE(1)求证:四边形BCFE是平行四边形;(2)当ACB=60°时,求证:四边形BCFE是菱形24我市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y(万元)与年产量x(万件)之间的函数图象是顶点为原点的抛物线的一部分(如图所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为W万元(毛利润=销售额生产费用)(1)请直接写出y与x以及z与x之间的函数关系式;(写出自变量x的取值范围)(2)求W与x之间的函数关系式;(写出自变量x的取值范围);并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?(3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润?参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】分析:根据极差=最大值-最小值;平均数指在一组数据中所有数据之和再除以数据的个数;一组数据中出现次数最多的数据叫做众数,以及方差公式S2= (x1-)2+(x2-)2+(xn-)2,分别进行计算可得答案详解:极差:10-8=2,平均数:(8×2+9×6+10×2)÷10=9,众数为9,方差:S2= (8-9)2×2+(9-9)2×6+(10-9)2×2=0.4,故选A点睛:此题主要考查了极差、众数、平均数、方差,关键是掌握各知识点的计算方法2、C【解析】根据反比例函数的图像性质进行判断【详解】解:,电压为定值,I关于R的函数是反比例函数,且图象在第一象限,故选C【点睛】本题考查反比例函数的图像,掌握图像性质是解题关键3、D【解析】根据合并同类项法则、积的乘方及同底数幂的乘法的运算法则依次计算后即可解答.【详解】3a2aa,选项A不正确;a2+a5a7,选项B不正确;(ab)3a3b3,选项C不正确;a2a4a6,选项D正确故选D【点睛】本题考查了合并同类项法则、积的乘方及同底数幂的乘法的运算法则,熟练运用法则是解决问题的关键.4、D【解析】解:正方体的主视图与左视图都是正方形;球的主视图与左视图都是圆;圆锥主视图与左视图都是三角形;圆柱的主视图和左视图都是长方形;故选D5、C【解析】试题分析:4是腰长时,三角形的三边分别为4、4、4,4+4=4,不能组成三角形,4是底边时,三角形的三边分别为4、4、4,能组成三角形,周长=4+4+4=4,综上所述,它的周长是4故选C考点:4等腰三角形的性质;4三角形三边关系;4分类讨论6、D【解析】由 又ADBC,所以 故A正确,不符合题意;过D作DMBE交AC于N,得到四边形BMDE是平行四边形,求出BM=DE=BC,得到CN=NF,根据线段的垂直平分线的性质可得结论,故B正确,不符合题意;根据相似三角形的判定即可求解,故C正确,不符合题意;由BAEADC,得到CD与AD的大小关系,根据正切函数可求tanCAD的值,故D错误,符合题意【详解】A.ADBC,AEFCBF, ,故A正确,不符合题意;B. 过D作DMBE交AC于N,DEBM,BEDM,四边形BMDE是平行四边形, BM=CM,CN=NF,BEAC于点F,DMBE,DNCF,DF=DC,DCF=DFC,故B正确,不符合题意;C. 图中与AEF相似的三角形有ACD,BAF,CBF,CAB,ABE共有5个,故C正确,不符合题意;D. 设AD=a,AB=b,由BAEADC,有 tanCAD 故D错误,符合题意.故选:D.【点睛】考查相似三角形的判定,矩形的性质,解直角三角形,掌握相似三角形的判定方法是解题的关键.7、D【解析】画图,找出G2的临界点,以及G1的临界直线,分析出G1过定点,根据k的正负与函数增减变化的关系,结合函数图象逐个选项分析即可解答【详解】解:一次函数y22x+3(1x2)的函数值随x的增大而增大,如图所示,N(1,2),Q(2,7)为G2的两个临界点,易知一次函数y1kx+12k(k0)的图象过定点M(2,1),直线MN与直线MQ为G1与G2有公共点的两条临界直线,从而当G1与G2有公共点时,y1随x增大而减小;故正确;当G1与G2没有公共点时,分三种情况:一是直线MN,但此时k0,不符合要求;二是直线MQ,但此时k不存在,与一次函数定义不符,故MQ不符合题意;三是当k0时,此时y1随x增大而增大,符合题意,故正确;当k2时,G1与G2平行正确,过点M作MPNQ,则MN3,由y22x+3,且MNx轴,可知,tanPNM2,PM2PN,由勾股定理得:PN2+PM2MN2(2PN)2+(PN)29,PN,PM. 故正确综上,故选:D【点睛】本题是一次函数中两条直线相交或平行的综合问题,需要数形结合,结合一次函数的性质逐条分析解答,难度较大8、D【解析】由2x2+1x11知2x2+1x2,代入原式2(2x2+1x)1计算可得【详解】解:2x2+1x11,2x2+1x2,则4x2+6x12(2x2+1x)12×21411故本题答案为:D.【点睛】本题主要考查代数式的求值,运用整体代入的思想是解题的关键9、B【解析】解:如图所示:由题意可得:1=30°,3=50°,则2=30°,故由DCAB,则4=30°+50°=80°故选B点睛:此题主要考查了方向角的定义,正确把握定义得出3的度数是解题关键10、B【解析】根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案【详解】由表格中数据可得:A、这些运动员成绩的众数是2.35,错误;B、这些运动员成绩的中位数是2.30,正确;C、这些运动员的平均成绩是 2.30,错误;D、这些运动员成绩的方差不是0.0725,错误;故选B【点睛】考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量二、填空题(本大题共6个小题,每小题3分,共18分)11、<【解析】根据反比例函数的性质即可解答.【详解】当x2时,k6时,y随x的增大而减小x2时,y3故答案为:【点睛】此题主要考查了反比例函数的性质,解题的关键在于利用反比例函数图象上点的坐标特点判断函数值的取值范围 .12、1【解析】先求出直线y=x+2与坐标轴的交点坐标,再由三角形的中位线定理求出CD,得到C点坐标【详解】解:令x=0,得y=x+2=0+2=2,B(0,2),OB=2,令y=0,得0=x+2,解得,x=-6,A(-6,0),OA=OD=6,OBCD,CD=2OB=4,C(6,4),把c(6,4)代入y= (k0)中,得k=1,故答案为:1【点睛】本题考查了一次函数与反比例函数的综合,需要掌握求函数图象与坐标轴的交点坐标方法,三角形的中位线定理,待定系数法本题的关键是求出C点坐标13、【解析】根据比例的性质,设x5a,则y2a,代入原式即可求解.【详解】解:,设x5a,则y2a,那么故答案为:【点睛】本题主要考查了比例的性质,根据比例式用同一个未知数得出的值进而求解是解题关键14、1【解析】根据绝对值的性质即可解答.【详解】1的绝对值是1故答案为1【点睛】本题考查了绝对值的性质,熟练运用绝对值的性质是解决问题的关键.15、-1【解析】分析:解出不等式组的解集,与已知解集-1x1比较,可以求出a、b的值,然后相加求出2009次方,可得最终答案详解:由不等式得xa+2,xb,-1x1,a+2=-1,b=1a=-3,b=2,(a+b)2009=(-1)2009=-1故答案为-1点睛:本题是已知不等式组的解集,求不等式中另一未知数的问题可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得零一个未知数16、【解析】由M、N是BD的三等分点,得到DN=NM=BM,根据平行四边形的性质得到AB=CD,ABCD,推出BEMCDM,根据相似三角形的性质得到,于是得到BE=AB,故正确;根据相似三角形的性质得到=,求得DF=BE,于是得到DF=AB=CD,求得CF=3DF,故错误;根据已知条件得到SBEM=SEMN=SCBE,求得=,于是得到SECF=,故正确;根据线段垂直平分线的性质得到EB=EN,根据等腰三角形的性质得到ENB=EBN,等量代换得到CDN=DNF,求得DFN是等腰三角形,故正确【详解】解:M、N是BD的三等分点,DN=NM=BM,四边形ABCD是平行四边形,AB=CD,ABCD,BEMCDM,BE=CD,BE=AB,故正确;ABCD,DFNBEN,=,DF=BE,DF=AB=CD,CF=3DF,故错误;BM=MN,CM=2EM,BEM=SEMN=SCBE,BE=CD,CF=CD,=,SEFC=SCBE=SMNE,SECF=,故正确;BM=NM,EMBD,EB=EN,ENB=EBN,CDAB,ABN=CDB,DNF=BNE,CDN=DNF,DFN是等腰三角形,故正确;故答案为【点睛】考点:相似三角形的判定与性质;全等三角形的判定与性质;平行四边形的性质三、解答题(共8题,共72分)17、见解析【解析】解:不公平,理由如下:列表得:12321,22,23,231,32,33,341,42,43,4由表可知共有9种等可能的结果,其中数字之和为3的倍数的有3种结果,数字之和为4的倍数的有2种,则甲获胜的概率为、乙获胜的概率为,这个游戏对甲、乙双方不公平【点睛】考查的是游戏公平性的判断判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平用到的知识点为:概率=所求情况数与总情况数之比18、 (1) 现在平均每天生产1台机器(2) 现在比原计划提前5天完成【解析】(1)因为现在生产600台机器的时间与原计划生产450台机器的时间相同所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间,由此列出方程解答即可;(2)由(1)中解得的数据,原来用的时间-现在用的时间即可求得提前时间.【详解】解:(1)设现在平均每天生产x台机器,则原计划可生产(x-50)台依题意得:,解得:x=1检验x=1是原分式方程的解.(2)由题意得=20-15=5(天)现在比原计划提前5天完成.【点睛】此题考查分式方程的实际运用,找出题目蕴含的数量关系是解决问题的关键.19、(1);(2)80米/分;(3)6分钟【解析】(1)根据图示,设线段AB的表达式为:y=kx+b,把把(4,240),(16,0)代入得到关于k,b的二元一次方程组,解之,即可得到答案,(2)根据线段OA,求出甲的速度,根据图示可知:乙在点B处追上甲,根据速度=路程÷时间,计算求值即可,(3)根据图示,求出二者相遇时与出发点的距离,进而求出与终点的距离,结合(2)的结果,分别计算出相遇后,到达终点甲和乙所用的时间,二者的时间差即可所求答案【详解】(1)根据题意得:设线段AB的表达式为:y=kx+b (4x16),把(4,240),(16,0)代入得:,解得:,即线段AB的表达式为:y= -20x+320 (4x16),(2)又线段OA可知:甲的速度为:=60(米/分),乙的步行速度为:=80(米/分),答:乙的步行速度为80米/分,(3)在B处甲乙相遇时,与出发点的距离为:240+(16-4)×60=960(米),与终点的距离为:2400-960=1440(米),相遇后,到达终点甲所用的时间为:=24(分),相遇后,到达终点乙所用的时间为:=18(分),24-18=6(分),答:乙比甲早6分钟到达终点【点睛】本题考查了一次函数的应用,正确掌握分析函数图象是解题的关键20、 【解析】先化简分式,再计算x的值,最后把x的值代入化简后的分式,计算出结果【详解】原式= =1+ =1+= 当x=2cos30°+tan45°=2×+1=+1时=【点睛】本题主要考查了分式的加减及锐角三角函数值解决本题的关键是掌握分式的运算法则和运算顺序21、(1);(2)图象见解析,或;(3)【解析】(1)将抛物线的解析式配成顶点式,即可得出顶点坐标;(2)根据抛物线经过点M,用待定系数法求出抛物线的解析式,即可得出图象,然后将纵坐标3代入抛物线的解析式中,求出横坐标,然后将点再代入反比例函数的表达式中即可求出反比例函数的表示式;(3)设出A的坐标,表示出C,D的坐标,得到CD的长度,根据题意找到CD的最小值,因为AD的长度不变,所以当CD最小时,对角线AC最小,则答案可求【详解】解:(1),抛物线的顶点的坐标为故答案为:(2)将代入抛物线的解析式得:解得:,抛物线的解析式为抛物线的大致图象如图所示:将代入得:,解得:或抛物线与反比例函数图象的交点坐标为或将代入得:,将代入得:,综上所述,反比例函数的表达式为或(3)设点的坐标为,则点的坐标为,的坐标为的长随的增大而减小矩形在其对称轴的左侧,抛物线的对称轴为, 当时,的长有最小值,的最小值的长度不变,当最小时,有最小值的最小值故答案为:【点睛】本题主要考查二次函数,反比例函数与几何综合,掌握二次函数,反比例函数的图象与性质是解题的关键22、(1),或;(2) .【解析】【分析】(1)将P(m,n)代入y=kx,再结合m=2n即可求得k的值,联立y=与y=kx组成方程组,解方程组即可求得点P的坐标;(2)画出两个函数的图象,观察函数的图象即可得.【详解】(1)函数的图象交于点,n=mk,m=2n,n=2nk,k=,直线解析式为:y=x,解方程组,得,交点P的坐标为:(,)或(-,-); (2)由题意画出函数的图象与函数的图象如图所示,函数的图象与函数的交点P的坐标为(m,n),当k=1时,P的坐标为(1,1)或(-1,-1),此时|m|=|n|,当k>1时,结合图象可知此时|m|<|n|,当时,1.【点睛】本题考查了反比例函数与正比例函数的交点,待定系数法等,运用数形结合思想解题是关键.23、(1)见解析;(2)见解析【解析】(1)由题意易得,EF与BC平行且相等,利用四边形BCFE是平行四边形(2)根据菱形的判定证明即可【详解】(1)证明:DE为AB,AC中点DE为ABC的中位线,DE=BC,DEBC,即EFBC,EF=BC,四边形BCEF为平行四边形(2)四边形BCEF为平行四边形,ACB=60°,BC=CE=BE,四边形BCFE是菱形【点睛】本题考查平行四边形的判定和性质、菱形的判定、等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型24、(1)y=x1z=x+30(0x100);(1)年产量为75万件时毛利润最大,最大毛利润为1115万元;(3)今年最多可获得毛利润1080万元【解析】(1)利用待定系数法可求出y与x以及z与x之间的函数关系式;(1)根据(1)的表达式及毛利润销售额生产费用,可得出w与x的函数关系式,再利用配方法求出最值即可;(3)首先求出x的取值范围,再利用二次函数增减性得出答案即可.【详解】(1)图可得函数经过点(100,1000),设抛物线的解析式为yax1(a0),将点(100,1000)代入得:100010000a,解得:a,故y与x之间的关系式为yx1图可得:函数经过点(0,30)、(100,10),设zkxb,则,解得: ,故z与x之间的关系式为zx30(0x100);(1)Wzxyx130xx1x130x(x1150x)(x75)11115,0,当x75时,W有最大值1115,年产量为75万件时毛利润最大,最大毛利润为1115万元;(3)令y360,得x1360,解得:x±60(负值舍去),由图象可知,当0y360时,0x60,由W(x75)11115的性质可知,当0x60时,W随x的增大而增大,故当x60时,W有最大值1080,答:今年最多可获得毛利润1080万元【点睛】本题主要考查二次函数的应用以及待定系数法求一次函数解析式,注意二次函数最值的求法,一般用配方法.