2022-2023学年广东省河源市正德中学中考数学四模试卷含解析.doc
2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1已知ABC中,BAC=90°,用尺规过点A作一条直线,使其将ABC分成两个相似的三角形,其作法不正确的是( )A BC D2已知一元二次方程有一个根为2,则另一根为A2B3C4D83如图,以O为圆心的圆与直线交于A、B两点,若OAB恰为等边三角形,则弧AB的长度为( )ABCD4现有两根木棒,它们的长分别是20cm和30cm,若不改变木棒的长短,要钉成一个三角形木架,则应在下列四根木棒中选取( )A10cm的木棒B40cm的木棒C50cm的木棒D60cm的木棒5甲乙两同学均从同一本书的第一页开始,按照顺序逐页依次在每页上写一个数,甲同学在第1页写1,第2页写3,第3页写1,每一页写的数均比前一页写的数多2;乙同学在第1页写1,第2页写6,第3页写11,每一页写的数均比前一页写的数多1若甲同学在某一页写的数为49,则乙同学在这一页写的数为()A116B120C121D1266如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点,增加下列条件,不一定能得出BEDF的是()AAECFBBEDFCEBFFDEDBEDBFD7下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方体包装盒的是( )ABCD8下列运算正确的是()A2a+3a=5a2 B(a3)3=a9 Ca2a4=a8 Da6÷a3=a29实数a,b,c在数轴上对应点的位置大致如图所示,O为原点,则下列关系式正确的是()AacbcB|ab|abCacbcDbc10下列四个函数图象中,当x<0时,函数值y随自变量x的增大而减小的是( )ABCD11下列运算正确的是()A3a+a=4aB3x22x=6x2C4a25a2=a2D(2x3)2÷2x2=2x412若关于x的一元二次方程x22x+m0没有实数根,则实数m的取值是( )Am1Bm1Cm1Dm1二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是 14如图,正方形ABCD边长为3,连接AC,AE平分CAD,交BC的延长线于点E,FAAE,交CB延长线于点F,则EF的长为_15一个圆的半径为2,弦长是2,求这条弦所对的圆周角是_16为响应“书香成都”建设的号召,在全校形成良好的人文阅读风尚,成都市某中学随机调查了部分学生平均每天的阅读时间,统计结果如图所示,则在本次调查中,阅读时间的中位数是_小时17若关于x的方程x2-x+sin=0有两个相等的实数根,则锐角的度数为_18如图,已知反比例函数y=(k为常数,k0)的图象经过点A,过A点作ABx轴,垂足为B,若AOB的面积为1,则k=_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,已知O中,AB为弦,直线PO交O于点M、N,POAB于C,过点B作直径BD,连接AD、BM、AP(1)求证:PMAD;(2)若BAP=2M,求证:PA是O的切线;(3)若AD=6,tanM=,求O的直径20(6分)先化简,再求值:,其中.21(6分)某市对城区部分路段的人行道地砖、绿化带、排水管等公用设施进行全面更新改造,根据市政建设的需要,需在35天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作,只需10天完成甲、乙两个工程队单独完成此项工程各需多少天?若甲工程队每天的工程费用是4万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少22(8分)如图,A=B=30°(1)尺规作图:过点C作CDAC交AB于点D;(只要求作出图形,保留痕迹,不要求写作法)(2)在(1)的条件下,求证:BC2=BDAB23(8分)如图,已知ABC中,AB=AC=5,cosA=求底边BC的长24(10分)如图,已知,求证:25(10分)2013年我国多地出现雾霾天气,某企业抓住商机准备生产空气净化设备,该企业决定从以下两个投资方案中选择一个进行投资生产,方案一:生产甲产品,每件产品成本为a元(a为常数,且40a100),每件产品销售价为120元,每年最多可生产125万件;方案二:生产乙产品,每件产品成本价为80元,每件产品销售价为180元,每年可生产120万件,另外,年销售x万件乙产品时需上交0.5x2万元的特别关税,在不考虑其它因素的情况下:(1)分别写出该企业两个投资方案的年利润y1(万元)、y2(万元)与相应生产件数x(万件)(x为正整数)之间的函数关系式,并指出自变量的取值范围;(2)分别求出这两个投资方案的最大年利润;(3)如果你是企业决策者,为了获得最大收益,你会选择哪个投资方案?26(12分)如图,某大楼的顶部竖有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的倾斜角BAH30°,AB20米,AB30米(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度27(12分)已知抛物线y=ax2+bx+2过点A(5,0)和点B(3,4),与y轴交于点C(1)求抛物线y=ax2+bx+2的函数表达式;(2)求直线BC的函数表达式;(3)点E是点B关于y轴的对称点,连接AE、BE,点P是折线EBBC上的一个动点,当点P在线段BC上时,连接EP,若EPBC,请直接写出线段BP与线段AE的关系;过点P作x轴的垂线与过点C作的y轴的垂线交于点M,当点M不与点C重合时,点M关于直线PC的对称点为点M,如果点M恰好在坐标轴上,请直接写出此时点P的坐标参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】分析:根据过直线外一点作这条直线的垂线,及线段中垂线的做法,圆周角定理,分别作出直角三角形斜边上的垂线,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;即可作出判断.详解:A、在角BAC内作作CAD=B,交BC于点D,根据余角的定义及等量代换得出BBAD=90°,进而得出ADBC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;A不符合题意;B、以点A为圆心,略小于AB的长为半径,画弧,交线段BC两点,再分别以这两点为圆心,大于两交点间的距离为半径画弧,两弧相交于一点,过这一点与A点作直线,该直线是BC的垂线;根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形是彼此相似的;B不符合题意;C、以AB为直径作圆,该圆交BC于点D,根据圆周角定理,过AD两点作直线该直线垂直于BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;C不符合题意;D、以点B为圆心BA的长为半径画弧,交BC于点E,再以E点为圆心,AB的长为半径画弧,在BC的另一侧交前弧于一点,过这一点及A点作直线,该直线不一定是BE的垂线;从而就不能保证两个小三角形相似;D符合题意;故选D.点睛:此题主要考查了相似变换以及相似三角形的判定,正确掌握相似三角形的判定方法是解题关键2、C【解析】试题分析:利用根与系数的关系来求方程的另一根设方程的另一根为,则+2=6, 解得=1考点:根与系数的关系3、C【解析】过点作, , , 为等腰直角三角形, , 为等边三角形, , 故选C.4、B【解析】设应选取的木棒长为x,再根据三角形的三边关系求出x的取值范围进而可得出结论【详解】设应选取的木棒长为x,则30cm-20cmx30cm+20cm,即10cmx50cm故选B【点睛】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边差小于第三边是解答此题的关键5、C【解析】根据题意确定出甲乙两同学所写的数字,设甲所写的第n个数为49,根据规律确定出n的值,即可确定出乙在该页写的数【详解】甲所写的数为 1,3,1,7,49,;乙所写的数为 1,6,11,16,设甲所写的第n个数为49,根据题意得:491+(n1)×2,整理得:2(n1)48,即n124,解得:n21,则乙所写的第21个数为1+(211)×11+24×1121,故选:C【点睛】考查了有理数的混合运算,弄清题中的规律是解本题的关键6、B【解析】由四边形ABCD是平行四边形,可得AD/BC,AD=BC,然后由AE=CF,EBF=FDE,BED=BFD均可判定四边形BFDE是平行四边形,则可证得BE/DF,利用排除法即可求得答案【详解】四边形ABCD是平行四边形,AD/BC,AD=BC,A、AE=CF,DE=BF,四边形BFDE是平行四边形,BE/DF,故本选项能判定BE/DF;B、BE=DF,四边形BFDE是等腰梯形,本选项不一定能判定BE/DF;C、AD/BC,BED+EBF=180°,EDF+BFD=180°,EBF=FDE,BED=BFD,四边形BFDE是平行四边形,BE/DF,故本选项能判定BE/DF;D、AD/BC,BED+EBF=180°,EDF+BFD=180°,BED=BFD,EBF=FDE,四边形BFDE是平行四边形,BE/DF,故本选项能判定BE/DF故选B【点睛】本题考查了平行四边形的判定与性质,注意根据题意证得四边形BFDE是平行四边形是关键7、C【解析】A、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;B、剪去阴影部分后,无法组成长方体,故此选项不合题意;C、剪去阴影部分后,能组成长方体,故此选项正确;D、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;故选C8、B【解析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则、合并同类项法则分别化简得出答案【详解】A、2a+3a=5a,故此选项错误;B、(a3)3=a9,故此选项正确;C、a2a4=a6,故此选项错误;D、a6÷a3=a3,故此选项错误故选:B【点睛】此题主要考查了同底数幂的乘除运算以及合并同类项和幂的乘方运算,正确掌握运算法则是解题关键9、A【解析】根据数轴上点的位置确定出a,b,c的范围,判断即可【详解】由数轴上点的位置得:ab0c,acbc,|ab|ba,bc,acbc.故选A【点睛】考查了实数与数轴,弄清数轴上点表示的数是解本题的关键10、D【解析】A、根据函数的图象可知y随x的增大而增大,故本选项错误;B、根据函数的图象可知在第二象限内y随x的增大而减增大,故本选项错误;C、根据函数的图象可知,当x0时,在对称轴的右侧y随x的增大而减小,在对称轴的左侧y随x的增大而增大,故本选项错误;D、根据函数的图象可知,当x0时,y随x的增大而减小;故本选项正确故选 D【点睛】本题考查了函数的图象,函数的增减性,熟练掌握各函数的性质是解题的关键.11、D【解析】根据合并同类项、单项式的乘法、积的乘方和单项式的乘法逐项计算,结合排除法即可得出答案.【详解】A. 3a+a=2a,故不正确; B. 3x22x=6x3,故不正确;C. 4a25a2=-a2 ,故不正确; D. (2x3)2÷2x2=4x6÷2x2=2x4,故正确;故选D.【点睛】本题考查了合并同类项、单项式的乘法、积的乘方和单项式的乘法,熟练掌握它们的运算法则是解答本题的关键.12、C【解析】试题解析:关于的一元二次方程没有实数根,解得:故选C二、填空题:(本大题共6个小题,每小题4分,共24分)13、10【解析】由正方形性质的得出B、D关于AC对称,根据两点之间线段最短可知,连接DE,交AC于P,连接BP,则此时PB+PE的值最小,进而利用勾股定理求出即可【详解】如图,连接DE,交AC于P,连接BP,则此时PB+PE的值最小.四边形ABCD是正方形,B、D关于AC对称,PB=PD,PB+PE=PD+PE=DE.BE=2,AE=3BE,AE=6,AB=8,DE=10,故PB+PE的最小值是10.故答案为10.14、6【解析】利用正方形的性质和勾股定理可得AC的长,由角平分线的性质和平行线的性质可得CAE=E,易得CE=CA,由FAAE,可得FAC=F,易得CF=AC,可得EF的长【详解】解:四边形ABCD为正方形,且边长为3, AC=3, AE平分CAD, CAE=DAE,ADCE, DAE=E, CAE=E, CE=CA=3, FAAE,FAC+CAE=90°,F+E=90°, FAC=F, CF=AC=3,EF=CF+CE=3+3=615、60°或120°【解析】首先根据题意画出图形,过点O作ODAB于点D, 通过垂径定理, 即可推出AOD的度数, 求得AOB的度数, 然后根据圆周角定理,即可推出AMB和ANB的度数.【详解】解:如图:连接OA,过点O作ODAB 于点D,OA=2,AB=,AD=BD=,AD:OA=:2,AOD=, AOB=,AMB=,ANB=.故答案为: 或.【点睛】本题主要考查垂径定理与圆周角定理,注意弦所对的圆周角有两个,他们互为补角.16、1【解析】由统计图可知共有:8+19+10+3=40人,中位数应为第20与第21个的平均数,而第20个数和第21个数都是1(小时),则中位数是1小时故答案为1.17、30°【解析】试题解析:关于x的方程有两个相等的实数根, 解得: 锐角的度数为30°;故答案为30°18、-1【解析】试题解析:设点A的坐标为(m,n),因为点A在y=的图象上,所以,有mnk,ABO的面积为1,=1,=1,k=±1,由函数图象位于第二、四象限知k<0,k=-1考点:反比例外函数k的几何意义.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)证明见解析;(2)证明见解析;(3)1;【解析】(1)根据平行线的判定求出即可;(2)连接OA,求出OAP=BAP+OAB=BOC+OBC=90°,根据切线的判定得出即可;(3)设BC=x,CM=2x,根据相似三角形的性质和判定求出NC=x,求出MN=2x+x=2.1x,OM=MN=1.21x,OC=0.71x,根据三角形的中位线性质得出0.71x=AD=3,求出x即可【详解】(1)BD是直径,DAB=90°,POAB,DAB=MCB=90°,PMAD;(2)连接OA,OB=OM,M=OBM,BON=2M,BAP=2M,BON=BAP,POAB,ACO=90°,AON+OAC=90°,OA=OB,BON=AON,BAP=AON,BAP+OAC=90°,OAP=90°,OA是半径,PA是O的切线;(3)连接BN,则MBN=90°tanM=,=,设BC=x,CM=2x,MN是O直径,NMAB,MBN=BCN=BCM=90°,NBC=M=90°BNC,MBCBNC,BC2=NC×MC,NC=x,MN=2x+x=2.1x,OM=MN=1.21x,OC=2x1.21x=0.71x,O是BD的中点,C是AB的中点,AD=6,OC=0.71x=AD=3,解得:x=4,MO=1.21x=1.21×4=1,O的半径为1【点睛】本题考查了圆周角定理,切线的性质和判定,相似三角形的性质和判定等知识点,能灵活运用知识点进行推理是解此题的关键,此题有一定的难度20、-1,-9.【解析】先去括号,再合并同类项;最后把x=-2代入即可【详解】原式,当x=-2时,原式-8-1=-9.【点睛】本题考查了整式的混合运算及化简求值,关键是先按运算顺序把整式化简,再把对应字母的值代入求整式的值21、(1)甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天;(2)应该选择甲工程队承包该项工程【解析】(1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天再根据“甲、乙两队合作完成工程需要10天”,列出方程解决问题;(2)首先根据(1)中的结果,从而可知符合要求的施工方案有三种:方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:由甲乙两队合作完成针对每一种情况,分别计算出所需的工程费用【详解】(1)设甲工程队单独完成该工程需天,则乙工程队单独完成该工程需天.根据题意得:方程两边同乘以,得解得:经检验,是原方程的解.当时,.答:甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天.(2)因为甲乙两工程队均能在规定的35天内单独完成,所以有如下三种方案:方案一:由甲工程队单独完成.所需费用为:(万元);方案二:由乙工程队单独完成.所需费用为:(万元);方案三:由甲乙两队合作完成.所需费用为:(万元).应该选择甲工程队承包该项工程.【点睛】本题考查分式方程在工程问题中的应用分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键22、见解析【解析】(1)利用过直线上一点作直线的垂线确定D点即可得;(2)根据圆周角定理,由ACD=90°,根据三角形的内角和和等腰三角形的性质得到DCB=A=30°,推出CDBACB,根据相似三角形的性质即可得到结论【详解】(1)如图所示,CD即为所求;(2)CDAC,ACD=90°A=B=30°,ACB=120°DCB=A=30°,B=B,CDBACB,BC2=BDAB【点睛】考查了等腰三角形的性质和相似三角形的判定和性质和作图:在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作23、【解析】过点B作BDAC,在ABD中由cosA=可计算出AD的值,进而求出BD的值,再由勾股定理求出BC的值.【详解】解:过点B作BDAC,垂足为点D,在RtABD中,,,AB=5,AD=AB·cosA=5×=3,BD=4,AC=5,DC=2,BC=.【点睛】本题考查了锐角的三角函数和勾股定理的运用.24、证明见解析【解析】根据等式的基本性质可得,然后利用SAS即可证出,从而证出结论【详解】证明:,即,在和中,【点睛】此题考查的是全等三角形的判定及性质,掌握利用SAS判定两个三角形全等和全等三角形的对应边相等是解决此题的关键25、(1)y1=(120-a)x(1x125,x为正整数),y2=100x-0.5x2(1x120,x为正整数);(2)110-125a(万元),10(万元);(3)当40a80时,选择方案一;当a=80时,选择方案一或方案二均可;当80a100时,选择方案二【解析】(1)根据题意直接得出y1与y2与x的函数关系式即可;(2)根据a的取值范围可知y1随x的增大而增大,可求出y1的最大值又因为0.50,可求出y2的最大值;(3)第三问要分两种情况决定选择方案一还是方案二当2000200a1以及2000200a1【详解】解:(1)由题意得:y1=(120a)x(1x125,x为正整数),y2=100x0.5x2(1x120,x为正整数);(2)40a100,120a0,即y1随x的增大而增大,当x=125时,y1最大值=(120a)×125=110125a(万元)y2=0.5(x100)2+10,a=0.50,x=100时,y2最大值=10(万元);(3)由110125a10,a80,当40a80时,选择方案一;由110125a=10,得a=80,当a=80时,选择方案一或方案二均可;由110125a10,得a80,当80a100时,选择方案二考点:二次函数的应用26、 (1) BH为10米;(2) 宣传牌CD高约(4020)米【解析】(1)过B作DE的垂线,设垂足为G分别在RtABH中,通过解直角三角形求出BH、AH;(2)在ADE解直角三角形求出DE的长,进而可求出EH即BG的长,在RtCBG中,CBG=45°,则CG=BG,由此可求出CG的长然后根据CD=CG+GE-DE即可求出宣传牌的高度【详解】(1)过B作BHAE于H,RtABH中,BAH30°,BHAB×2010(米),即点B距水平面AE的高度BH为10米;(2)过B作BGDE于G,BHHE,GEHE,BGDE,四边形BHEG是矩形由(1)得:BH10,AH10,BGAH+AE(10+30)米,RtBGC中,CBG45°,CGBG(10+30)米,CECG+GECG+BH10+30+1010+40(米),在RtAED中,tanDAEtan60°,DEAE30CDCEDE10+40304020答:宣传牌CD高约(4020)米【点睛】本题考查解直角三角形的应用-仰角俯角问题和解直角三角形的应用-坡度坡角问题,解题的关键是掌握解直角三角形的应用-仰角俯角问题和解直角三角形的应用-坡度坡角问题的基本方法.27、(1)y=x2+x+2;(2)y=2x+2;(3)线段BP与线段AE的关系是相互垂直;点P的坐标为:(4+2,8+4)或(42,84)或(0,4)或(,4)【解析】(1)将A(5,0)和点B(3,4)代入y=ax2+bx+2,即可求解;(2)C点坐标为(0,2),把点B、C的坐标代入直线方程y=kx+b即可求解;(3)AE直线的斜率kAE=2,而直线BC斜率的kAE=2即可求解;考虑当P点在线段BC上时和在线段BE上时两种情况,利用PM=PM即可求解【详解】(1)将A(5,0)和点B(3,4)代入y=ax2+bx+2,解得:a=,b=,故函数的表达式为y=x2+x+2;(2)C点坐标为(0,2),把点B、C的坐标代入直线方程y=kx+b,解得:k=2,b=2,故:直线BC的函数表达式为y=2x+2,(3)E是点B关于y轴的对称点,E坐标为(3,4),则AE直线的斜率kAE=2,而直线BC斜率的kAE=2,AEBC,而EPBC,BPAE而BP=AE,线段BP与线段AE的关系是相互垂直;设点P的横坐标为m,当P点在线段BC上时,P坐标为(m,2m+2),M坐标为(m,2),则PM=2m,直线MMBC,kMM=,直线MM的方程为:y=x+(2+m),则M坐标为(0,2+m)或(4+m,0),由题意得:PM=PM=2m,PM2=42+m2=(2m)2,此式不成立,或PM2=m2+(2m+2)2=(2m)2,解得:m=4±2,故点P的坐标为(4±2,8±4);当P点在线段BE上时,点P坐标为(m,4),点M坐标为(m,2),则PM=6,直线MM的方程不变,为y=x+(2+m),则M坐标为(0,2+m)或(4+m,0),PM2=m2+(6+m)2=(2m)2,解得:m=0,或;或PM2=42+42=(6)2,无解;故点P的坐标为(0,4)或(,4);综上所述:点P的坐标为:(4+2,8+4)或(42,84)或(0,4)或(,4)【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系