欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    倍长中线与截长补短法(教育精品).ppt

    • 资源ID:87079692       资源大小:2.75MB        全文页数:15页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    倍长中线与截长补短法(教育精品).ppt

    初中数学辅助线专题(辅助线口诀)辅助线一般作法初中几何常见辅助线作法口诀初中几何常见辅助线作法口诀人说几何很困难,难点就在辅助线。人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。还要刻苦加钻研,找出规律凭经验。三角形三角形 图中有角平分线,可向两边作垂线。图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。要证线段倍与半,延长缩短可试验。三角形中两中点,连接则成中位线。三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。三角形中有中线,延长中线等中线。解题还要多心眼,经常总结方法显。解题还要多心眼,经常总结方法显。切勿盲目乱添线,方法灵活应多变。切勿盲目乱添线,方法灵活应多变。分析综合方法选,困难再多也会减。分析综合方法选,困难再多也会减。虚心勤学加苦练,成绩上升成直线。虚心勤学加苦练,成绩上升成直线。1 1、有有以以线线段段中中点点为为端端点点的的线线段段时时,常常延延长长加加倍倍此线段,构造全等三角形。此线段,构造全等三角形。例例如如:如如图图4-14-1:ADAD为为ABCABC的的中中线线,且且1=21=2,3=43=4,求证:,求证:BE+CFEFBE+CFEF一、一、倍长法倍长法证明:廷长证明:廷长ED至至M,使,使DM=DE,连接,连接 CM,MF。在。在 BDE和和 CDM中,中,BD=CD (中点定义)(中点定义)1=5 (对顶角相等)(对顶角相等)ED=MD (辅助线作法)(辅助线作法)BDECDM (SAS)又又1=2,3=4(已知)(已知)1+2+3+4=180(平角的定义)(平角的定义)3+2=90即:即:EDF=90 FDM=EDF=90在在 EDF和和 MDF中中 ED=MD (辅助线作(辅助线作 法)法)EDF=FDM (已证)(已证)DF=DF (公共边)(公共边)EDFMDF (SAS)EF=MF(全等三角形对应边相等)(全等三角形对应边相等)在在 CMF中,中,CF+CMMF(三角形两边之和大于第三边)(三角形两边之和大于第三边)BE+CFEF在三角形中线时,常廷长加倍中线,构造全等三角形。在三角形中线时,常廷长加倍中线,构造全等三角形。例如:如图例如:如图5-1:AD为为 ABC的中线,求证:的中线,求证:AB+AC2AD分析:要证分析:要证AB+AC2AD,由图想到:由图想到:AB+BDAD,AC+CDAD,所以有所以有AB+AC+BD+CD AD+AD=2AD,左边比要证结论多左边比要证结论多BD+CD,故不能直接证出此题,故不能直接证出此题,而由而由2AD想到要构造想到要构造2AD,即加倍中线,即加倍中线,把所要证的线段转移到同一个三角形中去把所要证的线段转移到同一个三角形中去 证明:延长证明:延长AD至至E,使,使DE=AD,连接,连接BE,CE AD为为ABC的中线的中线 (已知)(已知)BD=CD (中线定义)(中线定义)在在ACD和和EBD中中 BD=CD (已证)(已证)1=2 (对顶角相等)(对顶角相等)AD=ED (辅助线作法)(辅助线作法)ACDEBD (SAS)BE=CA(全等三角形对应边相等)(全等三角形对应边相等)在在ABE中有:中有:AB+BEAE(三角形两边之和大(三角形两边之和大于第三边)于第三边)AB+AC2AD。(常延长中线加倍,构造全等三角形)(常延长中线加倍,构造全等三角形)练习已知ABC,AD是BC边上的中线,分别以AB边、AC边为直角边各向外作等腰直角三角形,如图5-2,求证EF=2AD。二、截长补短法作辅助线 要证明两条线段之和等于第三条线段,可以采取“截长补短”法。截长法即在较长线段上截取一段等于两较短线段中的一条,再证剩下的一段等于另一段较短线段。所谓补短,即把两短线段补成一条,再证它与长线段相等。让我们来大显身手吧!例如:已知如图6-1:在ABC中,ABAC,1=2,P为AD上任一点 求证:AB-ACPB-PC。要证:AB-ACPB-PC,想到利用三角形三边关系定理证明。因为欲证的线段之差,故用两边之差小于第三边,从而想到构造第三边AB-AC故可在AB上截取AN等于AC,得AB-AC=BN再连接PN,则PC=PN,又在PNB中,PB-PNPB-PC。思路导航证明:(截长法)在证明:(截长法)在AB上截取上截取AN=AC连接连接PN 在在APN和和APC中中 AN=AC(辅助线作法)(辅助线作法)1=2(已知)(已知)AP=AP(公共边)(公共边)APNAPC(SAS)PC=PN(全等三角形对应边相等)(全等三角形对应边相等)在在BPN中,有中,有 PB-PNBN(三角形两边之差小于第(三角形两边之差小于第三边)三边)BP-PCPM-PC(三角形两边之差小于第三边三角形两边之差小于第三边)AB-ACPB-PC。

    注意事项

    本文(倍长中线与截长补短法(教育精品).ppt)为本站会员(gsy****95)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开