43空间直角坐标系(45).ppt
14.3.1 4.3.1 空间直角坐标系空间直角坐标系 X 1 1数轴数轴Ox上的点上的点M,用代数的方法怎样表示呢,用代数的方法怎样表示呢?2 2直角坐标平面上的点直角坐标平面上的点M,怎样表示呢?,怎样表示呢?数轴数轴Ox上的点上的点M,可用与它对应的实数,可用与它对应的实数x表示;表示;直角坐标平面上的点直角坐标平面上的点M,可用一对有序实数,可用一对有序实数(x,y)表示表示xOyAOxxM(x,y)xy3 3空间中的点空间中的点M用代数的方法又怎样表示呢?用代数的方法又怎样表示呢?当建立空间直角坐标系后,空间中的点当建立空间直角坐标系后,空间中的点M,可以,可以用有序实数(用有序实数(x,y,z)表示)表示OyxzMxyz(x,y,z)yxz 如图,如图,是单位正方体以是单位正方体以O为原点,分别以为原点,分别以射线射线OA,OC,的方向为正方向,以线段的方向为正方向,以线段OA,OC,的长为单位长,建立三条数轴:的长为单位长,建立三条数轴:x轴、轴、y 轴、轴、z 轴这时我们轴这时我们说建立了一个说建立了一个空间直角坐标系空间直角坐标系 ,其中点,其中点O 叫做坐标原叫做坐标原点,点,x轴、轴、y 轴、轴、z 轴叫做坐标轴通过每两个坐标轴的平面轴叫做坐标轴通过每两个坐标轴的平面叫做坐标平面,分别称为叫做坐标平面,分别称为xOy 平面、平面、yOz平面、平面、zOx平面平面空间直角坐标系空间直角坐标系ABCO 右手直角坐标系右手直角坐标系:在空间直角坐标系中,让右手:在空间直角坐标系中,让右手拇指指向拇指指向 x 轴的正方向,食指指向轴的正方向,食指指向 y 轴的正方向,如轴的正方向,如果中指指向果中指指向 z 轴的正方向,则称这个坐标系为右手直轴的正方向,则称这个坐标系为右手直角坐标系角坐标系空间直角坐标系空间直角坐标系zxyO 设点设点M是空间的一个定点,过点是空间的一个定点,过点M分别作垂直分别作垂直于于x 轴、轴、y 轴和轴和z 轴的平面,依次交轴的平面,依次交x 轴、轴、y 轴和轴和z 轴轴于点于点P、Q和和R空间直角坐标系空间直角坐标系yxzMO 设点设点P、Q和和R在在x 轴、轴、y 轴和轴和z 轴上的坐标分别轴上的坐标分别是是x,y和和z,那么点,那么点M就对应唯一确定的有序实数组就对应唯一确定的有序实数组(x,y,z)MRQP 反过来,给定有序实数组反过来,给定有序实数组(x,y,z),我们可以,我们可以在在x 轴、轴、y 轴和轴和z 轴上依次取坐标为轴上依次取坐标为x,y和和z的点的点P、Q和和R,分别过,分别过P、Q和和R各作一个平面,分别垂直于各作一个平面,分别垂直于x 轴、轴、y 轴和轴和z 轴,这三个平面的唯一交点就是有序实数组(轴,这三个平面的唯一交点就是有序实数组(x,y,z)确定的点确定的点M空间直角坐标系空间直角坐标系yxzMOMRQP空间直角坐标系空间直角坐标系yxzPMQOMR 这样空间一点这样空间一点M的坐标可以用有序实数组(的坐标可以用有序实数组(x,y,z)来表示,有序实数组()来表示,有序实数组(x,y,z)叫做点)叫做点M 在此在此空空间直角坐标系中的坐标间直角坐标系中的坐标,记作,记作M(x,y,z)其中)其中x叫做点叫做点M的的横坐标横坐标,y叫做点叫做点M的的纵坐标纵坐标,z叫做点叫做点M的的竖坐标竖坐标yxzABCO OABCABCD是单位正方体以是单位正方体以O为原点,分别以射为原点,分别以射线线OA,OC,OD的方向为正方向,以线段的方向为正方向,以线段OA,OC,OD的长为单的长为单位长,建立位长,建立空间直角坐标系空间直角坐标系Oxyz试说出正方体的各个顶点试说出正方体的各个顶点的坐标并指出哪些点在坐标轴上,哪些点在坐标平面上的坐标并指出哪些点在坐标轴上,哪些点在坐标平面上空间直角坐标系空间直角坐标系(0,0,0)(1,0,0)(1,1,0)(0,1,0)(1,0,1)(1,1,1)(0,1,1)(0,0,1)10例题例题例例1 1、如下图,在长方体、如下图,在长方体OABC-DABCOABC-DABC中,中,|OA|=3|OA|=3,|OC|=4|OC|=4,|OD|=2|OD|=2,写出,写出DD,C C,AA,BB四点的坐标四点的坐标.解:解:点点B在平面上的射影是在平面上的射影是B,因此它的横坐标,因此它的横坐标x与纵坐与纵坐标标y同点同点B的横坐标的横坐标x与纵坐标与纵坐标y 相同在相同在xOy平面上,点平面上,点B 横横坐标坐标x=3,纵坐标,纵坐标y=4;点;点B在在z轴上的射影是轴上的射影是D,它的竖坐标,它的竖坐标与点与点D的竖坐标相同,点的竖坐标相同,点D的竖坐标的竖坐标z=2 所以点所以点B的坐标是(的坐标是(3,4,2)OyxzACB 例例2 结晶体的基本单位称为晶胞,如图是食盐晶胞的示意结晶体的基本单位称为晶胞,如图是食盐晶胞的示意图(可看成是八个棱长为图(可看成是八个棱长为 的小正方体堆积成的正方体),其的小正方体堆积成的正方体),其中红点代表钠原子,黑点代表氯原子中红点代表钠原子,黑点代表氯原子典型例题典型例题 解解:把图中的钠原子分成上、中、下三层来写它们所在把图中的钠原子分成上、中、下三层来写它们所在位置的坐标位置的坐标 例例2 结晶体的基本单位称为晶胞,如图是食盐晶胞的示意结晶体的基本单位称为晶胞,如图是食盐晶胞的示意图(可看成是八个棱长为图(可看成是八个棱长为 的小正方体堆积成的正方体),其的小正方体堆积成的正方体),其中色点代表钠原子,黑点代表氯原子中色点代表钠原子,黑点代表氯原子典型例题典型例题 如图建立空间直角坐标如图建立空间直角坐标系系O-xyz后,试写出全部钠原子所在位置的坐标后,试写出全部钠原子所在位置的坐标xyzO 上层的原子所在的平面平行于平面,与轴交点的竖坐标为上层的原子所在的平面平行于平面,与轴交点的竖坐标为1,所以,这五个钠原子所在位置的坐标分别是,所以,这五个钠原子所在位置的坐标分别是:(0,0,1),(),(1,0,1),(),(1,1,1),(),(0,1,1),),(,1)中层的原子所在的平面平行于平面,与轴交点的竖坐标为,中层的原子所在的平面平行于平面,与轴交点的竖坐标为,所以,这四个钠原子所在位置的坐标分别是所以,这四个钠原子所在位置的坐标分别是(,0,),(),(1,),(),(,1,),(),(0,););典型例题典型例题 下层的原子全部在平面上,它们所下层的原子全部在平面上,它们所在位置的竖坐标全是在位置的竖坐标全是0,所以这五个钠,所以这五个钠原子所在位置的坐标分别是原子所在位置的坐标分别是(0,0,0),(1,0,0),(1,1,0),(0,1,0),(,0).xyzO14练习练习1 1、如下图,在长方体、如下图,在长方体OABC-DABCOABC-DABC中,中,|OA|=3|OA|=3,|OC|=4|OC|=4,|OD|=3|OD|=3,ACAC于于BDBD相交于相交于点点P.P.分别写出点分别写出点C C,BB,P P的坐标的坐标.zxyOACDBABCPP15练习练习zxyABCOADCBQQ2 2、如图,棱长为、如图,棱长为a a的正方体的正方体OABC-DABCOABC-DABC中,对中,对角线角线OBOB于于BDBD相交于点相交于点Q.Q.顶点顶点O O为坐标原点,为坐标原点,OAOA,OCOC分别在分别在x x轴、轴、y y轴的正半轴上轴的正半轴上.试写出点试写出点Q Q的坐标的坐标.例例2在空间直角坐标系中,写出点在空间直角坐标系中,写出点P(x,y,z)的对称点的坐标的对称点的坐标:(1)关于)关于x轴的对称点是轴的对称点是P1 ;(2)关于)关于y轴的对称点是轴的对称点是P2 ;(3)关于)关于z轴的对称点是轴的对称点是P3 ;(4)关于原点的对称点是)关于原点的对称点是P4 ;(x,y,z)(x,y,z)(x,y,z)(x,y,z)(5)关于)关于xOy坐标平面的对称点是坐标平面的对称点是P5 ;(6)关于)关于yOz坐标平面的对称点是坐标平面的对称点是P6 ;(7)关于)关于xOz坐标平面的对称点是坐标平面的对称点是P7 .(x,y,z)(x,y,z)(x,y,z)184.3.2 4.3.2 空间两点间的距离公式空间两点间的距离公式X思考思考1:1:基于上述分析,你能得到点基于上述分析,你能得到点 P P(x x,y y,z z)与坐标原点)与坐标原点O O的距离公式的距离公式吗?吗?xyzOPM思考思考2:2:在空间直角坐标系中,方程在空间直角坐标系中,方程 x x2 2+y+y2 2+z+z2 2=r=r2 2(r r0 0为常数)表示什么为常数)表示什么图形是什么?图形是什么?O Ox xy yz zP P在空间中,设点在空间中,设点P P1 1(x x1 1,y y1 1,z z1 1),),P P2 2(x x2 2,y y2 2,z z2 2)在)在xOyxOy平面上的射影平面上的射影分别为分别为M M、N.N.xyzOP2MP1N思考思考1:1:点点M M、N N之间的距离如何?之间的距离如何?思考思考2:2:若直线若直线P P1 1P P2 2垂直于垂直于xOyxOy平面,平面,则点则点P P1 1、P P2 2之间的距离如何?之间的距离如何?xyzOP2P1|P|P1 1P P2 2|=|z|=|z1 1-z-z2 2|思考思考2:2:若直线若直线P P1 1P P2 2垂直于垂直于xOyxOy平面,平面,则点则点P P1 1、P P2 2之间的距离如何?之间的距离如何?xyzOP2P1|P|P1 1P P2 2|=|z|=|z1 1-z-z2 2|思考思考3:3:若直线若直线P P1 1P P2 2平行于平行于xOyxOy平面,平面,则点则点P P1 1、P P2 2之间的距离如何?之间的距离如何?MNxyzOP2P1思考思考4:4:若直线若直线P P1 1P P2 2 是是xOyxOy平面的一条平面的一条斜线,则点斜线,则点P P1 1、P P2 2的距离如何计算?的距离如何计算?MNxyzOP2P1A A思考思考5:5:在上述图形背景下,点在上述图形背景下,点P P1 1(x x1 1,y y1 1,z z1 1)与)与P P2 2(x x2 2,y y2 2,z z2 2)之间的距离是)之间的距离是它对任意两点它对任意两点P P1 1、P P2 2都成立吗?都成立吗?例例1 1 在空间中,已知点在空间中,已知点A(1,0,-A(1,0,-1)1),B(4,3,-1)B(4,3,-1),求,求A A、B B两点之间两点之间的距离的距离.理论迁移理论迁移 例例2 2 已知两点已知两点 A(-4,1,7)A(-4,1,7)和和B(3,5,-2)B(3,5,-2),点,点P P在在z z轴上,若轴上,若|PA|=|PB|PA|=|PB|,求点,求点P P的坐标的坐标.3、如图,正方体 的棱长为a,且 。求MN的长。28