顺风向的等效风荷载.pptx
结构风压体形系数 风压高度变化系数 顺风向等效风荷载平均风压等效脉动风压 即:风振系数:上式可变为:一、顺风向等效风荷载基本公式第1页/共21页二、风压高度变化系数 梯度风高度梯度风高度:在一定高度不受地面粗糙的影响。设标准地面下的梯度风高度为 ,粗糙度系数为 ,任意地貌下相应值为 ,则:解得上两式得到:第2页/共21页 我国规范修订稿将地貌分成A,B,C,D四类A类指近海海面、海岛、海岸、湖岸及沙漠地区。取 ,;B类指田野、乡村、丛林、丘陵以及房屋比较稀疏的中小城镇和大城市郊区为标准地貌。取 ,;C类指有密集建筑群的城市市区。取 ,D类指有密集建筑群且房屋较高的城市市区。取 ,。将以上数据代入上述公式,即得A,B,C,D四类风压高度变化系数为第3页/共21页三、风压体型系数1、单体风压体型系数2、群体风压体型系数根据风洞实验确定注:风洞试验将在本章第七节介绍*第4页/共21页四、风振及阵风系数的结构1、无扭转时(1)基本方法 脉动风为随机动力风载,用随机振动理论求解。当考虑风和空间相关系性时,一般用一维连续杆件来模拟高层结构。无限自由度体系的振动方程:式中m(z)、c(z)、I(z)、p(z)均沿高度上的质量、阻尼系数、惯性和水平风力f(t)为时间函数,最大值为1,而w(x,z)为坐标(x,z)处的单位面积上的风力(1)第5页/共21页 振型的广义坐标 振型函数,与 和 有关 设用振型分解法求解,位移按振型展开为:无限自由度体系:上式的简化利用质量、刚度、阻尼(比例阻尼)的正交性(2)将(2)代入(1),得:第6页/共21页 只考虑第一振型,求出风振位移根方差 ,再乘以保证系数,即得风振位移值 式中 为考虑风压空间相关性后单位基本风压下第一振型广义脉动风力与广义质量的比值,则为相应的动力系数。当取空间相关性系数与风的频率无关仅与位置有关的时,值分别为:(3)第7页/共21页第1振型频率影响函数(传递函数)风谱,代表风能在各个频率上的分布函数(此时平均值0,根方差1)脉动系数风压空间相关性系数有关值可采用:第8页/共21页(3)式亦可改写成则:相应的风振力其中:第一振型脉动增大系数等截面结构第一振型影响系数振型函数截面变化时的修正系数(若为等截面,其值均为1)(4)第9页/共21页地貌房屋总高度H(m)304050607080901001502002500.5A0.440.420.420.390.380.360.350.330.270.240.21B0.420.420.410.380.370.360.350.330.280.250.22C0.400.400.400.380.370.360.350.340.290.270.23D0.360.370.370.360.360.360.350.340.300.270.251A0.480.490.470.450.450.430.420.410.350.310.27B0.460.480.460.450.450.430.420.420.360.330.29C0.430.450.440.440.440.430.420.420.370.340.31D0.390.420.420.420.430.420.420.420.380.360.332A0.500.510.510.490.490.490.470.460.420.380.35B0.480.490.500.490.490.490.470.470.420.400.36C0.450.480.490.480.480.480.480.480440.420.38D0.410.440.460.460.470.480.480.480.460.440.423A0.530.530.510.510.510.510.490.490.450.420.38B0.510.520.500.510.510.510.490.490.460.430.40C0.480.490.490.490.500.510.490.490.480.460.43D0.430.460.460.480.490.500.490.490.490.480.46等截面高层结构 值第10页/共21页001002004006008010020040060080100200400600800100020003000钢结构147157169177183188204224236246253280309328342354391414钢砼及砖石结构111114117119121123128134138142144154165172177177196206脉动增大系数相对高度0.10.20.30.40.50.60.70.80.91.00.160.260.350.440.530.610.700.800.891.00 高层建筑弯剪型振型系数 第11页/共21页 10.90.80.70.60.50.40.30.20.1宽度变化宽度变化1宽深变化宽深变化11.101.201.321.501.752.082.533.305.60尺度、质量沿高度作同一规律变化时的 第12页/共21页(2)求风振系数的简化方法:风振系数涉及及六个因素(4)亦可写成:可知:在工程上,根据长期积累的经验,周期 常用经验公式来求出。即:钢筋混凝土高层结构高层钢结构(H为总高度)的近似值的近似值(常在 左右)因此:变成了只与 及 五个因素有关 第13页/共21页 根据钢筋混凝土结构 、钢结构 的规范数据,可以直接制出沿高度变化的系数计算用表:等截面高层钢筋混凝土结构风振系数 注:1.此 处为基本风压(B类),对于非B类即A、C、D类,已将其影响反映在表内;2.对于C、D两类地貌,下部风压高度变化系数的变化(见表21),由于对高层结构影响 较小,未反映在表内;3.表中数据可用内插值法。等截面高层钢结构风振系数 注:1.此处 为基本风压(B类),对于非B类即A、C、D类,已将其影响反映在表内;2.对于C、D两类地貌,下部风压高度变化系数的变化(见表21),由于对高层结构影响较小,未反映在表内;3.高层钢结构,常在 2 以上,本表按 制出。第14页/共21页2、有扭转常用等效脉动风荷载直接计算,即用公式 高层建筑每一层均团集质量,因此每一层一般情况下除了两个方向得位移以外,还有一个扭转角,共有三个自由度。如果层数为n,则结构有3n个自由度。由各运动方向的平衡条件,可列出3n个联立微分方程组,其矩阵形式为:式中:(5)第17页/共21页质量矩阵 质量极惯性矩矩阵 阻尼矩阵 刚度矩阵 第 个质量的 向、向水平位移和扭转角在第 个片质量上 向、向的风力和风扭矩 第18页/共21页设位移 按振型 分解,即 代入(5),由于振型正交性和考虑阻尼项亦符合正交性的假设,得到 设计位移值等效脉动风荷载脉动影响系数脉动增大系数 与无扭转时的相同当脉动风力方向与y方向时,脉动力(6),第19页/共21页 当风向与y轴一致时,由于脉动风力系惯性力,通过质心,因此仅在y向的振型起作用,亦即式(6)中 实即 。计算研究表明,对一般工程结构,扭转对第1振型y向坐标即y向的第1振型不产生大的影响,在式(6)分母中,扭转影响不大,而第1振型对位移响应起着决定作用。由此可以得到 可用 代替进行计算,偏心的影响主要反映在振型上。第20页/共21页感谢您的观看!第21页/共21页