92空间中直线与直线之间的位置关系.pptx
1、熟练掌握异面直线定义;2、理解掌握空间两直线的位置关系;3、熟练掌握平行公理4,并会简单应用;4、理解掌握等角定理及其推论;5、熟练掌握异面直线所成角定义;6、掌握求两异面直线所成角的方法。第1页/共31页立交桥立交桥第2页/共31页ABCD六角螺母六角螺母第3页/共31页定义定义1:不同不同在在任何一个平面内任何一个平面内的两条直线的两条直线叫做异面直线。叫做异面直线。注:注:概念应理解为概念应理解为:“经过这两条直线无法作出一个平面”.或:“不可能找到一个平面同时经过这两条直线”注意注意:分别在某两个平面内的两条直线不一定分别在某两个平面内的两条直线不一定 是异面直线是异面直线,它们可能是相交它们可能是相交,也可能是平行也可能是平行.一、异面直线一、异面直线:第4页/共31页想一想:在空间中两条直线的想一想:在空间中两条直线的位置关系?位置关系?(1 1)相交直线)相交直线有且只有一个公共点有且只有一个公共点(2 2)平行直线)平行直线在同一平面内,没有公在同一平面内,没有公共点共点(3 3)异面直线)异面直线不同在任何一个平面内,不同在任何一个平面内,没有公共点没有公共点第5页/共31页二、空间两直线的位置关系:二、空间两直线的位置关系:(1)从公共点的数目来看,可分为:从公共点的数目来看,可分为:有且只有一个公共点两直线相交没有公共点两直线平行两直线为异面直线第6页/共31页(2)从平面的性质来讲,可分为:从平面的性质来讲,可分为:两直线相交在同一平面内两直线平行不在同一平面内两直线为异面直线第7页/共31页异面直线的画法异面直线的画法:Abababa第8页/共31页A1B1C1D1CBDA练习:如图:正方体的棱所在的直线中,练习:如图:正方体的棱所在的直线中,与直线与直线A1B异面的有哪些?异面的有哪些?答案:答案:D1C1、C1C、CD、D1D、AD、B1C1第9页/共31页探究探究:HGCADBEFGHEF(B)(C)DAAB,CD,EF,GH这四条线段所在的这四条线段所在的直线是异面直线的有几对直线是异面直线的有几对?相交直线有几对相交直线有几对?平行直线有几对平行直线有几对?第10页/共31页abced 我们知道,在同一平面内,如果两条直线都和第三条直线平行,那么这两条直线互相平行.在空间这一规律是否还成立呢?观察:将一张纸如图进行折叠,则各折痕及边 a,b,c,d,e,之间有何关系?a b c d e 公理:在空间平行于同一条直线的两条直线互相平行平行线的传递性推广:在空间平行于一条已知直线的所有直线都互相平行第11页/共31页空间四边形:空间四边形:如图,顺次连结不共面的四点如图,顺次连结不共面的四点A、B、C、D所组成的四边形叫做空间四边形所组成的四边形叫做空间四边形ABCD.ABCD相对顶点相对顶点A与与C,B与与D的的连线连线AC、BD叫做这个空叫做这个空间四边形的对角线间四边形的对角线.第12页/共31页例例1:已知:已知ABCD是四个顶点不在同一个平面内是四个顶点不在同一个平面内的空间四边形,的空间四边形,E,F,G,H分别是分别是AB,BC,CD,DA的中点,连结的中点,连结EF,FG,GH,HE,求证求证EFGH是一个平行四边形。是一个平行四边形。解题思想:EH是ABD的中位线 EH BD且EH=BD同理,FG BD且FG=BDEH FG且EH=FGEFGH是一个平行四边形证明:连结BD把所要解的立体几何问题转化为平面几何的问题解立体几何时最主要、最常用的一种方法。AB DEFGHC第13页/共31页在平面内,我们可以证明“如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补”空间中这一结论是否仍然成立呢?第14页/共31页观察:如图所示,长方体ABCD-A1B1C1D1中,ADC与A1D1C1,ADC与A1B1C1两边分别对应平行,这两组角的大小 关系如何?答:从图中可看出,ADC=A1D1C1,ADC+A1B1C1=180OD1C1B1A1CABD第15页/共31页问题:在空间中,如果一个角的两边问题:在空间中,如果一个角的两边和另一个角的两边分别平行,那么这和另一个角的两边分别平行,那么这两个角相等吗?两个角相等吗?第16页/共31页方向相同或相反,结果如何?方向相同或相反,结果如何?第17页/共31页一组边的方向相同,而另一组边的一组边的方向相同,而另一组边的方向相反,又如何?方向相反,又如何?第18页/共31页三、等角定理三、等角定理:空间中如果两个角的两边分别对应空间中如果两个角的两边分别对应平行,那么这两个角相等或互补平行,那么这两个角相等或互补.注意:(1)定理中的“方向相同”若改成“方向相反”,则这两个角也相等。(2)若改成“一边方向相同,而另一边方向相反”,则这两个角互补。第19页/共31页三、异面直线所成角的定义:三、异面直线所成角的定义:直线直线a、b是异面直线是异面直线,经过空间任意一点经过空间任意一点O,分别引直线分别引直线a1 a,b1 b,把直线把直线a1和和b1所成的所成的锐角锐角(或直角或直角)叫做叫做异面直线异面直线a和和b所成的角所成的角。平移法第20页/共31页 如果两条异面直线所成的角为直角,如果两条异面直线所成的角为直角,那么就称这两条异面直线垂直。那么就称这两条异面直线垂直。异面直线异面直线a和和b所成的角的范围:所成的角的范围:第21页/共31页 强调强调:1)范围范围 2)与与0的位置无关的位置无关;3)为了方便点为了方便点O选取应有利于选取应有利于解决问题,可取特殊点解决问题,可取特殊点(如如a 或或 b上上);4)找两条异面直线所成的角,找两条异面直线所成的角,要作平行移动要作平行移动(平行线平行线),把两条异面,把两条异面直线所成的角,直线所成的角,转化转化为两条相交直线为两条相交直线所成的角所成的角.第22页/共31页45o例2:(1)求直线BA1和CC1所成角的度数。第23页/共31页例2:(2)哪些棱所在直线与直线AA1垂直?第24页/共31页NEXTBACK 求异面直线所成的角的步骤是:一作(找):作(或找)平行线 二证:证明所作的角为所求的异 面直线所成的角。三求:在一恰当的三角形中求出角四、异面直线所成角的求法:四、异面直线所成角的求法:第25页/共31页例3:在正方体ABCD-ABCD中,棱长为a,E、F分别是棱AB,BC的中点,求:异面直线 AD与 EF所成角的大小;异面直线 BC与 EF所成角的大小;异面直线 BD与 EF所成角的大小.平平移移法法OGAC AC EF,OG BDBD 与EF所成的角即为AC与OG所成的角,即为AOG或其补角.第26页/共31页 如图,已知长方体ABCD-EFGH中,AB=,AD=,AE=2 (1)求BC 和EG 所成的角是多少度?(2)求AE 和BG 所成的角是多少度?解答:(1)GF BC EGF(或其补角)为所求(或其补角)为所求.Rt EFG中,求得中,求得EGF=45o(2)BF AE FBG(或其补角)为所求,Rt BFG中,求得FBG=60o5.5.课堂练习课堂练习ABGFHEDC2第27页/共31页不同在 任何 一个平面内的两条直线叫做异面直线。异面直线的定义:相交直线 平行直线异面直线空间两直线的位置关系6.课堂小结公理:在空间平行于同一条直线的两条直线互相平行异面直线的求法:一作(找)二证三求空间中,如果两个角的两边分别对应平行,那么这两个角相等或互补等角定理:异面直线的画法用平面来衬托异面直线所成的角平移,转化为相交直线所成的角第28页/共31页作业:P16:1,2第29页/共31页立体几何第30页/共31页谢谢大家观赏!第31页/共31页