欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    第一讲《不等式和绝对值不等式》课件(新人教选修4-5)[1].ppt

    • 资源ID:87172403       资源大小:560KB        全文页数:45页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    第一讲《不等式和绝对值不等式》课件(新人教选修4-5)[1].ppt

    第一讲 不等式和绝对值不等式1、不等式1、不等式的基本性质:、对称性:传递性:_ 、,a+cb+c、ab,那么acbc;ab,那么acbc、ab0,那么,acbd、ab0,那么anbn.(条件 )、ab0 那么 (条件 )练习:1、判断下列各命题的真假,并说明理由:(1)如果ab,那么acbc;(2)如果ab,那么ac2bc2;(3)如果ab,那么anbn(nN+);(4)如果ab,cb-d。2、比较(x+1)(x+2)和(x-3)(x+6)的大小。(假命题)(假命题)(假命题)(假命题)(真命题)(真命题)(假命题)(假命题)解:因为解:因为(x+1)(x+2)-(x-3)(x+6)=x2+3x+2-(x2+3x-18)=200,所以所以(x+1)(x+2)(x-3)(x+6)例2、已知ab0,cd0,求证:例1、求证:如果ab0,cd0,那么acbd。证明:因为ab0,cd0,由不等式的基本性质(3)可得acbc,bcbd,再由不等式的传递性可得acbcbd。练习:如果ab,cd,是否一定能得出acbd?并说明理由。例3、若a、b、x、yR,则 是 成立的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件C例5、已知f(x)=ax2+c,且-4f(1)-1,-1f(2)5,求f(3)的取值范围。例4、对于实数a、b、c,判断下列命题的真假:(1)若cab0,则(2)若ab,,则a0,bb,ab0,那么(2)如果ab0,cd0,那么ac0,那么当且仅当a=b时,等号成立。证明:因为证明:因为 =a+b-2 00,所以所以a+ba+b ,上式当且仅当上式当且仅当 ,即,即a=ba=b时,等号成时,等号成立。立。称为称为a,b的的算术平均算术平均称为称为a,b的的几何平均几何平均 两个正数的算术平均不小于它们的几何平均。两个正数的算术平均不小于它们的几何平均。如图在直角三角形中,CO、CD分别是斜边上的中线和高,设AD=a,DB=b,则由图形可得到基本不等式的几何解释。CABDO例3 求证:(1)在所有周长相同的矩形中,正方形的面积最大;(2)在所有面积相同的矩形中,正方形的周长最短。结论:已知结论:已知x,y都是正数。(都是正数。(1)如果积)如果积xy是定值是定值p,那么当,那么当x=y时,和时,和x+y有最小值有最小值2 ;(;(2)如)如果和果和x+y是定值是定值s,那么当,那么当x=y时,积时,积xy有最大值有最大值ABENMFDCQPHG例4 某居民小区要建一座八边某居民小区要建一座八边形的休闲场所,它的主体造型形的休闲场所,它的主体造型平面图(右图)是由两个相同的平面图(右图)是由两个相同的矩形矩形ABCD和和EFGH构成的面积构成的面积为为200平方米的十字型地域,计平方米的十字型地域,计划在正方形划在正方形MNPQ上建一座花坛,上建一座花坛,造价为每平方米造价为每平方米4200元,在四个相同的矩形上(图中阴影部分)铺元,在四个相同的矩形上(图中阴影部分)铺花岗岩地坪,造价为每平方米花岗岩地坪,造价为每平方米210元,再在四个空角(图中四个直元,再在四个空角(图中四个直角三角形)上铺上草坪,造价为每平方米角三角形)上铺上草坪,造价为每平方米80元。元。(1)设总造价为)设总造价为S元,元,AD长为长为x米,试建立米,试建立S关于关于x的函数关系式。的函数关系式。(2)当)当x为何值时为何值时S最小,并求出这个最小值。最小,并求出这个最小值。课堂练习:课本P10第5题、第6题、第9题5、设a,bR+,且ab,求证:(1)(2)6、设a,b,c是不全相等的正数,求证:(1)(a+b)(b+c)(c+a)8abc;(2)a+b+c9、已知x、yR,求证:小结:理解并熟练掌握基本不等式及其应用,特别要注意利用基本不等式求最值时,一定要满足“一正二定三一正二定三相等相等”的条件。作业:课本P10第7、8、10题,第11题为选做题。3、三个正数的算术-几何平均不等式练习:是锐角,求y=sin cos2 的最大值。书书P10 15 13、在对角线有相同长度的所有矩形中,怎样的矩形周长最长,怎样的矩形面积最大?14、已知球的半径为R,球内接圆柱的底面半径为r,高为h,则r与 h为何值时,内接圆柱的体积最大?二、绝对值不等式1、绝对值三角不等式 实数a的绝对值|a|的几何意义是表示数轴上坐标为a的点A到原点的距离:OaAx|a|xABab|a-b|任意两个实数a,b在数轴上的对应点分别为A、B,那么|a-b|的几何意义是A、B两点间的距离。联系绝对值的几何意义,从“运算”的角度研究|a|,|b|,|a+b|,|a-b|等之间的关系:分ab0和ab0时,如下图可得|a+b|=|a|+|b|Oxaba+bOxaba+b(2)当ab0,b0,如下图可得:|a+b|a|+|b|Obaxa+b如果a0,如下图可得:|a+b|00,|x-a|x-a|,|,|y-by-b|,求证:,求证:|2x+3y-2a-3b|5|2x+3y-2a-3b|5.证明:|2x+3y-2a-3b|=|(2x-2a)+(3y-3b)|=|2(x-a)+3(y-b)|2(x-a)|+|3(y-b)|=2|x-a|+3|y-b|2+3=5.所以所以|2x+3y-2a-3b|5|2x+3y-2a-3b|0,则|x|a的解集是(-,-a)(a,+)Oa-axO-aax|x|a(1)|ax+b|c和|ax+b|c(c0)型不等式的解法:换元法:令t=ax+b,转化为|t|c和|t|c型不等式,然后再求x,得原不等式的解集。分段讨论法:例3 解不等式|3x-1|2例4 解不等式|2-3x|7补充例题:解不等式|ax+b|c(c0)型不等式比较:类型化去绝对值后集合上解的意义区别|ax+b|c-cax+b-c x|ax+bcax+bcx|ax+bc,并 课堂练习:P20第6题x12-2-3ABA1B1yxO-32-2利用绝对值不等式的几何意义利用绝对值不等式的几何意义零点分区间法零点分区间法构造函数法构造函数法作业:作业:P20第第7题、第题、第8题题(1)(3)练习:练习:P20第第8题题(2)补充练习:解不等式:(1)1|2x+1|3.(2)|x-1|-4|x+3.答案:(1)x|0 x1或-2x-1 (2)x|-5x-1或3x7 (3)作业作业8.解不等式解不等式:

    注意事项

    本文(第一讲《不等式和绝对值不等式》课件(新人教选修4-5)[1].ppt)为本站会员(hyn****60)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开