欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    正交试验设计原理与实例教程.pptx

    • 资源ID:87175758       资源大小:1.75MB        全文页数:98页
    • 资源格式: PPTX        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    正交试验设计原理与实例教程.pptx

    在试验研究中,对于单因素或两因素试验,因其因素少,试验的设计、实施与分析都比较简单。但在实际工作中,常常需要同时考察 3个或3个以上的试验因素,若进行全面试验,则试验的规模将很大,往往因试验条件的限制而难于实施。正 交设计就是安排多因素试验、寻求最优水平组合 的一种高效率试验设计方法。第1页/共98页1正交试验设计的意义 正交试验属于试验设计方法的一种。简单地讲,试验设计是研究如何科学安排试验,以较少的人力物力消耗而取得较多较全面的信息。试验安排得好,事半功倍;反之则事倍功半,甚至达不到预期目的。因此,如何进行试验设计是一个至关重要的问题。第2页/共98页 正交试验设计是试验优化的常用技术。所谓试验优化,是指在最优化思想的指导下,进行最优设计的一种优化方法。它从不同的优良性出发,合理设计试验方案,有效控制试验干扰,科学处理试验数据,全面进行优化分析,直接实现优化目标,已成为现代优化技术的一个重要方面。第3页/共98页 正交设计的基本特点是:用部分试验来代替全面试验,通过对部分试验结果的分析,了解全面试验的情况。第4页/共98页.试验为什么要设计全面试验包含的水平组合数较多,工作量大,由于受试验场地、试验材料、经费等限制而难于实施。例如,有6个因素:每因素取 5个水平,全面试验就需要56=15625个组合。若试验的主要目的是 寻 求 最 优水平组合,则 可利用正交 设计来安排试验。第5页/共98页.正交拉丁方正交拉丁方在试验安排中,每个因素在研究的范围内选几个水平,就好比在选优区内打上网格,如果网上的每个点都做试验,就是全面试验。3个因素的选优区可以用一个立方体表示(图11-2),3个因素各取 3个水平,把立方体划分成27个格点,反映在 图11上就是立方体内的27个“.”。若27个网格点都试验,就是全面试验,其试验方案如表11所示。第6页/共98页第7页/共98页 3 因 素 3 水 平 的 全 面试验水平组合数为33=27,4 因素3水平的全面试验水平组合数为34=81,5因素3水平的全面试验水平组合数为35=243,这在试验中是不可能做到的。第8页/共98页 正交设计就是从选优区全面试验点(水平组合)中挑选出有代表性的部分试验点(水平组合)来进行试验。图11-A中标有试验号的九个“()”,就是利用正交表L9(34)从27个试验点中挑选出来的9个试验点。即:第9页/共98页关于正交的直观印象数据点分布是均匀的数据点分布是均匀的每一个面都有每一个面都有3个点个点每一条线都有每一条线都有1个点个点第10页/共98页1.3正交试验设计 正交试验设计也称正交设计(orthogonal design),是用来科学地设计多因素试验的一种方法。它利用一套规格化的正交表(orthogonal table)安排试验,得到的试验结果再用数理统计方法进行处理,使之得出科学结论。正交表是试验设计的基本工具,它是根据均衡分布的思想,运用组合数学理论构造的一种数学表格,均衡分布性是正交表的核心。第11页/共98页 19世纪20年代,英国统计学家R.A.Fisher首先后马铃薯肥料试验当中,运用排列均衡的拉丁方,解决了试验时的不均匀试验条件,获得成功,并创立了“试验设计”这一新兴学科。“均衡分布”思想在20世纪50年代应用于工业领域,60年代应用于农业领域,使正交试验在科研生产实际中得到推广。第12页/共98页2、正交表、正交表.正交正交表表 正交拉丁方的自然推广正交拉丁方的自然推广由于正交设计安排试验和分析试验结果都要 用 正交表,因此,我们先对正交表作一介绍。安排的4因素3水平的试验,编上试验号,列成另外一种形式,见正交表L9(34)(表11-6)。可以由此得到系列正交表(orthogonal table)。第13页/共98页第14页/共98页 常用的正交表已由数学工作者制定出来,供进行正交设计时选用。2水平正交表除L8(27)外,还有L4(23)、L16(215)等;3水平正交表有L9(34)、L27(213)等(详见附表17及有关参考书)。表11-6是一张正交表,记号为L9(34),其中“L”代表正交表;L右下角的数字“9”表示有9行,用这张正交表安排试验包含3个处理(水平组合);括号内的底数“3”表示因素的水平数,括号内3的指数“4”表示有4列,也指安排的因素数,用这张正交表最多可以安排4个3水平因素。第15页/共98页2.2 2.2 正交表的表示符号正交表的表示符号正交表的表示符号正交表的表示符号 正交表记号所表示的含义归纳如下:正交表记号所表示的含义归纳如下:L Ln(tn(tq q)式式中中:L L为为正正交交表表符符号号,是是LatinLatin的的第第一一个个字字母母;n n为为试试验验次次数数,即即正正交交表表行行数数;t t为为因因素素的的水水平平数数,即即1 1列列中中出出现现不不同同数数字字的的个个数数;q;q为为最最多多能能安安排排的的因因素素数数,即正交表的列数。即正交表的列数。第16页/共98页正交表表示方法L9(34)正交表列数正交表列数一列中出现的数字个数一列中出现的数字个数正交表行数正交表行数正交表的代号正交表的代号第17页/共98页 正交表中1列可以安排1个因素,因此它可安排的因素数可以小于或等于q,但不能大于q。括号内的tq表示q个因素、每个因素t个水平全面试验的水平组合数(即处理数)。因为安排因素个数不能大于q,所以n/tq为最小部分实施。显然,L4(23)是最简单的正交表,有4列3行用它最多能安排3个2水平因素的试验。部分试验为4次,全面试验为8次,最小部分实施为1/2,即用它安排试验可比全面试验少做1/2。所以,当试验因素数q及每个因素的水平数t增加时n/tq则下降,节省试验次数的效果更明显。第18页/共98页一般非等水平正交表表示为Ln(t1q1 X t2 q2)(q1不等于q2)Ln(tlq1 X t2q2 X t3q3)(q1q2q),它们各代表一个具体的数字表格。又称混合型正交表。当用非等水平正交表示为Ln(t1q1 X t2 q2)安排试验时。则因素数应不大于q1+q2,且t1水平的因素数不大于q1,t2水平的因素数不大于q2,最小部分实施为n/(t1q1+t2 q2)。第19页/共98页2.3 常用正交表的分类及特点 1、标准表(相同水平正交表)相同水平正交表)2水平:L4(23),L8(27),L16(215),3水平:L9(34),L27(313),L81(340),4水平:L16(45),L64(4 21),L256(485),5水平:L25(56),L125(5 31),L625(5156),各列中出现的最大数字相同的正交表称为相同水平正交表。如L4(23)、L8(27)、L12(211)等各列中最大数字为2,称为两水平正交表;L9(34)、L27(313)等各列中最大数字为3,称为3水平正交表。凡是标准表,水平数都相等。且水平数只能取素数或素数幂。因此有7 7水平,9 9水平的标准表,没有6 6水平,8 8水平的标准表。第20页/共98页2.3 常用正交表的分类及特点2、非标准表(混合水平正交表)混合水平正交表)各列中出现的最大数字不完全相同的正交表称为混合水平正交表。如L8(424)表中有一列最大数字为4,有4列最大数字为2。也就是说该表可以安排一个4水平因素和4个2水平因素。再如L16(4423),L16(4212)等都混合水平正交表。第21页/共98页2.4正交表的基本性质任何一张正交表都有如下三个特性:()正交性1、任一列中,不同数字出现的次数相等任一列中,不同数字出现的次数相等例如L8(27)中不同数字只有1和2,它们各出现4次;L9(34)中不同数字有1、2和3,它们各出现3次。第22页/共98页 2、任两列中,同一横行所组成的数字对出现的次数相等任两列中,同一横行所组成的数字对出现的次数相等 例如 L8(27)中(1,1),(1,2),(2,1),(2,2)各出现两次;L9(34)中(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)各出现1次。即每个因素的一个水平与另一因素的各个水平互碰次数相等,表明任意两列各个数字之间的搭配是均匀的。第23页/共98页由正交表的正交性可以看出:正交表各列的地位是平等的,表中各列之间可以互相置换,称为列间置换;正交表各行之间也可相互置换,称行间置换;正交表中同一列的水平数字也可以相互置换,称水平置换。上述3种置换即正交表的3种初等置换。经过初等置换所能得到的一切正交表,称为原正交表的同构表或等价表,显然,实际应用时,可以根据不同需要进行变换。第24页/共98页 (2)代表性。代表性的含义之一,在于正交表的正交性中:任一列的各水平都出现,使得部分试验中包含所有因素的所有水平。任意2列间的所有组合全部出现,使任意两因素间都是全面试验。因此,在部分试验中,所有因素的所有水平信息及两两因素间的所有组合信息都无一遗漏。这样,虽然安排的是部分试验,却能够了解全面试验的情况,从这个意义上讲可以代表全面试验。第25页/共98页 因为正交性,使部分试验点必然均衡地分布后全面试验的试验点中。所谓均衡分散,是指用正交表挑选出来的各因素水平组合在全部水平组合中的分布是均匀的。由 图11-2可以看出,在立方体中,任一平面内都包含 3 个“()”,任一直线上都包含1个“()”,因此,这些点代表性强,能够较好地反映全面试验的情况。第26页/共98页 (3 3)综合可比性。)综合可比性。反映在正交性当中:反映在正交性当中:任一列各水平出现的次数都相等。任一列各水平出现的次数都相等。任任2 2 2 2列列间间所所有有可可能能的的组组合合出出现现的的次次数数都都相相等等。因因此此使使任任一一因因素素各各水水平平的的试试验验条条件件相相同同。这这就就保保证证了了在在每每列列因因素素各各个个水水平平的的效效果果中中,最最大大限限度度地地排排除除其其他他因因素素的的干干扰扰,突突出出本本列列因因素素的的作作用用,从从而而可可以以综综合合比比较较该该因因素素不不同同水水平平对对试试验验指指标标的的影影响响。这这种种性性质质称称为为综综合合可可比比性性或或整齐可比性。整齐可比性。如如在在AA、BB、C C 3 3个个因因素素中中,AA因因素素的的3 3个个水水平平 A1A1、A2A2、A3 A3 条件下各有条件下各有 B B、C C 的的 3 3 个不同水平,即:个不同水平,即:第27页/共98页 在这9个水平组合中,A因素各水平下包括了B、C因素的3个水平,虽然搭配方式不同,但B、C皆处于同等地位,当比较A因素不同水平时,B因素不同水平的效应相互抵消,C因素不同水平的效应也相互抵消。所以A因素3个水平间具有可比性。同样,B、C因素3个水平间亦具有可比性。第28页/共98页 根据以上两个特性,我们用正交表安排的试验,具有均衡分散和整齐可比的特点。正交表的3个基本性质中,正交性即均衡性是核心,是基础,代表性和综合可比性是正交性的必然结果,从而使正交表得以具体应用。正交表集其3个性质于一体,成为正交试验设计的有效工具,用它来安排试验,也必然具有“均衡分散,整齐可比”的特性,代表性强,效率也高。因而,实际应用越来越广。第29页/共98页 交互作用的处理。在试验设计中,交互作一律当做因素看待,这是处理交互作用的一条总原则。第30页/共98页第31页/共98页第32页/共98页3 正交试验设计的基本步骤 正交试验设计(简称正交设计)的基本程序是设计试验方案和处理试验结果两大部分。主要步骤可归纳如下:第一步,明确试验目的,确定考核指标。第二步,挑因素,选水平。第三步,选择合适的正交表。第四步,进行表头设计。第五步,确定试验方案。第六步,试验结果分析。第33页/共98页3.1明确试验目的,确定考核指标 试验目的,就是通过正交试验要想解决什么问题。考核指标,就是用来衡量或考核试验效果的质量指标。试验指标一经确定,就应当把衡量和评定指标的原则、标准,测定试验指标的方法及所用的仪器等确定下来。这本身就是一项细致而复杂的研究工作。第34页/共98页3.2 挑因素,选水平 影响指标者称为因素。因素在试验中变化的各种状态,称为水平。因素的变化引起指标的变化,正交试验法适用于试验中能人为加以控制和调节的因素可控因素。选好的因素、水平通常可列成因素水平表。第35页/共98页3.3 选择合适的正交表 总原则:能容纳所有考察因素,又使试验号最小。一般有这样几条规则:(1)先看水平数。根据水平数选用相应的水平的正交表。(2)其次看试验要求。如只考察主效应,则可选择较小的表,只要所有因素均能顺序上列即可。如果还需考察交互效应,那么就要选用较大的表,而且各因素的排列不能任意上列,要按照各种能考察交互作用的表头设计来安排因素。第36页/共98页3.3 选择合适的正交表(3)再看允许做试验的正交表的次数和有无重点因素要考察。如果只允许做9次试验,而考察因素只有3-4个,则用3水平的L9(34)表来安排试验。若有重点因素要详细考察则可选用水平数不等的正交表如L8(4X24)等,将重点因素多取几个水平加以详细考察。要求精度高,可选较大的n值的L表。切不可遗漏重要因素,所以可倾向于多考察些因素。可以先用水平数少的正交表作试验,找出重要因素后,对少数重要因素再作有交互作用的细致考察。第37页/共98页3.4 进行表头设计 所谓表头设计,就是将试验因素安排到所选正交表的各列中去的过程。(1)只考察主效应,不考察交互效应,正交表中每一列的位置是一样的,可以任意变换。因此,不考察交互效应的表头设计非常简单,将所有因素任意上列即可。(2)考察交互作用的表头设计,各因素及各交互作用不能任意安排,必须严格按交互作用列表进行配列。这是有交互作用正交设计的重要特点,也是试验方案设计的关键一步。第38页/共98页3.4 进行表头设计 避免混杂,是表头设计的一个重要原则,也是表头设计选优的一个重要条件。所谓混杂,是指在正交表的同一列中,安排了2个或2个以上的因素或交互作用。这样,就无法确定同一列中的这些不同因素或交互作用对试验指标的作用效果。为避免混杂,使表头设计合理、更优,那些主要因素,重点考察的因素,涉及交互作用较多的因素,就应该优先安排;而另一些次要因素,涉及交互作用较少的因素和不涉及交互作用的因素,可放在后面安排。表11-10是L8(4X24)的表头设计。第39页/共98页3.5 排出试验方案【例例1】鸭肉保鲜天然复合剂的筛选。虽然有机酸和盐处理对鸭肉保鲜有明显效果,但是大部分有机酸和盐属于合成的化学药剂,在卫生安全上得不到保证,并且不符合消费者纯天然,无污染的要求,试验以茶多酚作为天然复合保鲜剂的主要成分,分别添加不同的增效剂、被膜剂和不同的浸泡时间,进行了4因素和4水平的正交试验,试安排一个正交试验方案。正交设计一般有以下几个步骤:(1)明确目的,确定指标:本例是一个食品加工工艺的研究试验,目的是通过试验,寻求一个最佳的鸭肉天然复合保鲜剂。第40页/共98页 (2)挑因素、选水平)挑因素、选水平 影响试验结果的因素很多,我们不可能把所有影响因素通过一次试验都予以研究,只能根据以往的经验,挑选和确定若干对试验指标影响最大、有较大经济意义而又了解不够清楚的因素来研究。同时还应根据实际经验和专业知识,定出各因素适宜的水平,列出因素水平表。【例例1】的因素水平表如表11-11所示,选定了4个因素,每个因素4个水平的正交试验。第41页/共98页第42页/共98页 (3)选用合适的正交表选用合适的正交表 确定了因素及其水平后,根据因素、水平及需要考察的交互作用的多少来选择合适的正交表。选用正交表的原则是:既要能安排下试验的全部因素,又要使部分水平组合数(处理数)尽可能地少。一般情况下,试验因素的水平数应恰好等于正交表记号中括号内的底数;因素的个数(包括交互作用)应不大于正交表记号中括号内的指数;各因素及交互作用的自由度之和要小于所选正交表的总自由度,以便估计试验误差。若各因素及交互作用的自由度之和等于所选正交表总自由度,则可采用有重复正交试验来估计试验误差。本例选L16(45)最合适,有1空列,可以作为试验误差以衡量试验的可靠性。第43页/共98页 (4)表头设计 所谓表头设计,就是把挑选出的因素和要考察的交互作用分别排入正交表的表头适当的列上。在不考察交互作用时,各因素可随机安排在各列上;若考察交互作用,就应按该正交表的交互作用列表安排 各 因 素与交互作用。此例不考察交互作用,可将(A)、(B)和(C)依次安排在L16(45)的第1、2、3列上,第 4 列 为空列,见表11-12。第44页/共98页 (5)排出试验方案排出试验方案把正交表中安排各因素的每个列(不包含欲考察的交互作用列)中的每个数字依次换成该因素的实际水平,就得到一个正交试验方案。表11-12就是例11-2 的正交试验方案。从而得出试验的16个处理,即:123 3,241 2,343 4,421 1,131 4,213 1,311 3,433 2,114 2,232 3,334 1,412 4,142 1,224 4,322 2,444 3。第45页/共98页 第46页/共98页【例2】要生产某种食品添加剂,根据试验发现影响添加剂收率的因素有4个,每个因素设置2种水平(表11-13)。本例有4个因素,如果安排后L8(27)表中,从表11-8 L8(27)表头设计可以查出,4个因素应安排在1,2,4,7列为好,这样考察4个因素各自的效应都不会与交互作用混杂。另外根据专业知识可知,D因素与A,B,C3因素之间没有或者少有交互作用。故将D因素安排后第七列,则3,5,6列就仅为AXB,AXC和BXC单独的交互作用。第47页/共98页 本例有4个因素,如果安排后L8(27)表中,从表11-8 L8(27)表头设计可以查出,4个因素应安排在1,2,4,7列为好,这样考察4个因素各自的效应都不会与交互作用混杂。另外根据专业知识可知,D因素与A,B,C3因素之间没有或者少有交互作用。故将D因素安排后第七列,则3,5,6列就仅为AXB,AXC和BXC单独的交互作用。第48页/共98页4正交试验的结果分析4.1直观分析法(极差分析法)凡采用正交表设计的试验,都可用正交表分析试验的结果,正交试验的结果分析,有直观分析和方差分析2种方法,现分别予以介绍。4.1.1不考虑交互作用的分析法 现对【例1】进行分析,该试验的结果见表11-14。第49页/共98页第50页/共98页 分分析析方方法法:首首先先从从1616个个处处理理中中直直观观地地找找出出最最优优处处理理组组合合为为9 9号号处处理理,即即A A1 1B B1 1C C4 4D D2 2,指指标标为为38.7938.79;其其次次为为1313号号处处理理A A1 1B B4 4C C2 2D D1 1,指指标标为为38.0238.02,但但是是究究竟竟哪哪一一个个是是最最好好的的指指标标呢呢?现后通过直观分析进行验证:?现后通过直观分析进行验证:第51页/共98页4、正交试验结果的结果分析、正交试验结果的结果分析 若各号试验处理都只有一个观测值,则称之为单独观测值正交试验;若各号试验处理都有两个或两个以上观测值,则称之为有重复观测值正交试验。下面分别介绍单独观测值和有重复观测正交试验结果的方差分析。第52页/共98页4.1.2 考察交互作用的试验结果分析 考察交互作用的试验结果的分析方法与前面并无本质不同,只是:应把每个互作当成一个因素看待进行分析;应根据互作的效应,选择出最优试验组合。见表11-1511-15。第53页/共98页 4.2.1 无重复试验的方差分析无重复试验的方差分析 这种分析方法要求用正交表设计试验时,必须留有不排入因素或互作的空例,以作为误差的估计值。【例例3】某食品厂或产口香糖,检验口香糖的质量好坏需要分析:拉伸率(越大越好);变形(越小越好);耐弯曲次数(越多越好)这3种指标,要求对3种指标都取得较好水平,现要进行口香糖配方的试验分析,因素水平表见表11-17,结果分析见表11-18。第54页/共98页 第55页/共98页 资料整理:本试验3个指标同等重要,我们只以拉伸率1项为例作方差分析,其余2项及综合考察留给大家作练习之用。表11-18中一共有A,B,C,D4项因素,每一因素为4水平,每一水平的重复次数为4次,总次数为16次(n)。自由度与平方和分解:该次试验的16个观测值总变异由A因素、B因素、C因素、D因素及误差变异五部分组成,因而进行方差分析时平方和与自由度的划分式为:SST=SSA+SSB+SSC+SSD+SSe dfT =dfA +dfB+dfC+dfD+dfe第56页/共98页表11-18中,Ki为各因素同一水平试验指标(拉伸率%)之和。如 A因素第1水平K1=y1+y2+y3+y4=545+490+515+505=2055 A因素第2水平K2=y5+y6+y7+y8=492+485+499+480=1956,A因素第3水平K3=y9+y10+y11+y12=566+539+511+515=2131,A因素第4水平K4=y13+y14+y15+y16=535+488+495+475=1993第57页/共98页B因素第1水平K1=y1+y5+y9+y13=545+492+566+535=2138,B因素第3水平K3=y3+y7+y11+y15=515+499+511+495=2020同理可求得C因素和D因素各水平试验指标之和。第58页/共98页 为各因素同一水平试验指标的平均数。如A因素第1水平=2055/4=513.75,A因素第2水平=1956/4=489.0,A因素第3水平=2131/4=532.75,A因素第4水平=1993/4=489.25,同理可求得B、C因素各水平试验指标的平均数。第59页/共98页 1、计算各项平方和与自由度计算各项平方和与自由度矫正数 C=T2/n=81352/15=4136139.063 总平方和SST=y2-C =5452+4902+4752-4136139.063 =10167.9375 第60页/共98页A因素平方和 SSA=/a-C =(20552+19562+21312+19932)/4 4136139.063=4403.6875 B因素平方和 SSB=/b-C =(21382+20022+20202+19752)/4-4136139.063=3897.1875第61页/共98页 C因素平方和 SSC=T2C/c-C =(20162+19922+20212+20782)/4 4136139.063=1062.1875 D因素平方和 SSD=T2D/d-C =(20472+20162+20212+20512)/4 4136139.063=237.6875第62页/共98页误差平方和SSe=SST-SSA-SSB-SSC-SSD =10167.9375-4403.6875-3879.1875 1062.1875-237.6875=585.1875第63页/共98页 总自由度dfT =n-1=16-1=15 A因素自由度dfA=ka-1=4-1=3 B因素自由度dfB=kb-1=4-1=3 C因素自由度dfC=kc-1=4-1=3D因素自由度dfd=kd-1=4-1=3 误差自由度dfe=dfT-dfA-dfB-dfC-dfd =15-3-3-3-3=3第64页/共98页 2、列出方差分析表,进行列出方差分析表,进行F检验检验第65页/共98页 F 检验结果表明,四个因素对拉伸率的影响都不显著。究其原因可能是本例试验误差大且误差自由度小(仅为3),使检验的灵敏度低,从而掩盖了考察因素的显著性。由于各因素对增重影响都不显著,不必再进行各因素水平间的多重比较。此时,可直观地从表11-18中选择平均数大的水平A3、B1、C3、D4组合成最优水平组合A3B1C3 D4。第66页/共98页 上述无重复正交试验结果的方差分析,其误差是由“空列”来估计的。然而“空列”并不空,实际上是被未考察的交互作用所占据。这种误差既包含试验误差,也包含交互作用,称为模型误差。若交互作用不存在,用模型误差估计试验误差是可行的;若因素间存在交互作用,则模型误差会夸大试验误差,有可能掩盖考察因素的显著性。这时,试验误差应通过重复试验值来估计。所以,进行正交试验最好能有二次以上的重复。正交试验的重复,可采用完全随机或随机单位组设计。第67页/共98页 多重比较。从本试验的方差分析,相对来说A因素和B因素为重要因素,C因素和D因素为次要因素。对A,B两因素进行多重比较表11-20至表11-22,用LSR法。第68页/共98页 当dfe=3时,多重比较的结果以A3和B1为最好,另外A3和B1也可考虑,作为分析其他指标后综合平衡选择之用。从拉伸率这一指标来讲,最优组合为:A:胶基添加量21;B:葡萄糖浆添加量17;C,D因素不论。第69页/共98页 4.2.2 有重复观测值正交试验结果的有重复观测值正交试验结果的方差方差 有重复试验的方差分析与无重复试验的方差分析,除误差平方和、自由度的计算有所不同外,其余各项计算基本相同。【例4】有一水稻3因素试验,A因素为品种(4水平);B因素为栽插密度(2水平);C因素为施肥量(2水平);选用L8(4 X24),其表头设计和产量结果(小区面积30 m2)。见表11-23。用n表示试验(处理)号数,r表示试验处理的重复数。a、b、c、ka、kb、kc的意义同上。第70页/共98页第71页/共98页 对于有重复、且重复采用随机单位组设计的正交试验,总变异可以划分为处理间、单位组间和误差变异三部分,而处理间变异可进一步划分为A因素、B因素、C因素与模型误差变异四部分。此时,平方和与自由度划分式为:SST=SSt+SSr+SSe2 dfT=dft +dfr+dfe2 而SSt=SSA+SSB+SSC+SSe1 dft =dfA+dfB+dfC+dfe1 于是SST=SSA+SSB+SSC+SSr+SSe1+SSe2 dfT=dfA+dfB+dfC+dfr+dfe1+dfe2第72页/共98页 式中:SSr为单位组间平方和;SSe1为模型误差平方和;SSe2为试验误差平方和;SSt为处理间平方和;dfr、dfe1、dfe2、dft为相应自由度。注意,对于重复采用完全随机设计的正交试验,在平方和与自由度划分式中无SSr、dfr项。1、计算各项平方和与自由度、计算各项平方和与自由度矫正数 C =T2/r n=4962/38 =10250.67第73页/共98页 总平方和SST=x2-C =172+162+262 -10250.67 =451.33 单位组间平方和 SSr=T2r /n-C =(1692+1652+1622)/8-10250.67 =3.08第74页/共98页 处理间平方和 SSt =T2t/r-C =(522+592+822)/3-10250.67 =406.67 A因素平方和 SSA =T2A/ar-C =(1112+1382+932+1542)/23-10250.67 =371.0 第75页/共98页B B因素平方和因素平方和SSSSB B=T T2 2B B/br-C/br-C =(245=(2452 2+251+2512 2)/43-)/43-10250.67 =1.50 =1.50C C因素平方和因素平方和SSSSC C=T T2 2C C/cr-C/cr-C =(234 =(2342 2+262+2622 2)/43-)/43-10250.67 =32.66 =32.66 第76页/共98页模型误差平方和模型误差平方和SSSSe1 e1=SSSSt t SS SSA A SS SSB B-SS-SSC C =406.67-371.00-0 =406.67-371.00-0 32.6732.67 =3.00 =3.00试验误差平方和试验误差平方和 SSSSe2 e2=SSSST T SS SSr r-SS-SSt t =451.33-3.08 =451.33-3.08 405.16 405.16 =41.58 =41.58第77页/共98页 总自由度dfT=rn-1=38-1=23 单位组自由度dfr=r-1=3-1=2 处理自由度dft=n-1=8-1=7 A因素自由度dfA=ka-1=4-1=3 B因素自由度dfB=kb-1=2-1=1 C因素自由度dfC=kc-1=2-1=1 模型误差自由度 dfe1=dft-dfA-dfB-dfC =7-3-1-1=2 试验误差自由度dfe2=dfT-dft-dfr=23-7-2=14第78页/共98页 2、列出方差分析表,进行列出方差分析表,进行F检验检验第79页/共98页 首先检验MSe1与MSe2差异的显著性,若经F检验不显著,则可将其平方和与自由度分别合并,计算出合并的误差均方,进行F检验与多重比较,以提高分析的精度;若F检验显著,说明存在交互作用,二者不能合并,此时只能以MSe2进行F检验与多重比较。本例MSe1/MSe21,MSe1与MSe2差异不显著,故将误差平方和与自由度分别合并计算出合并的误差均方MSe,即MSe=(SSe1+SSe2)/(dfe1+dfe2)=(3.00+41.58)/(2+14)=2.78625 并用合并的误差均方MSe进行F检验与多重比较。第80页/共98页 F检验结果表明,A、C因素对水稻产量有显著影响,B因素作用不显著。4、A因素各水平平均数的多重比较因素各水平平均数的多重比较表表11-25 A因素各水平平均数多重比较表因素各水平平均数多重比较表(SSR法)单位:%第81页/共98页在实际研究中,有时试验因素之间存在交互作用。对于既考察因素主效应又考察因素间交互作用的正交设计,除表头设计和结果分析与前面介绍略有不同外,其它基本相同。【例例5】某一种抗菌素的发酵培养基由A、B、C 3种成分组成,各有两个水平,除考察A、B、C三个因素的主效因外,还考察A与B、B与C的交互作用。试安排一个正交试验方案并进行结果分析。第82页/共98页 (一一)选选用用正正交交表表,作作表表头头设设计计 由于本试验有3个两水平的因素和两个交互作用需要考察,各项自由度之和为:3(2-1)+2(2-1)(2-1)=5,因此可选用L8(27)来安排试验方案。正交表L8(27)中有基本列和交互列之分,基本列就是各因素所占的列,交互列则为两因素交互作用所占的列。可利用L8(27)二列间交互作用列表(见表12-30)来安排各因素和交互作用。第83页/共98页 如果将如果将A A因素放在第因素放在第1 1列列 ,B B 因素因素 放在第放在第 2 2列,查表列,查表可知,第可知,第1 1列与第列与第2 2列的交互作用列是第列的交互作用列是第3 3列列 ,于是将,于是将 A A与与B B 的交互作用的交互作用 ABAB放在第放在第3 3列。这样第列。这样第3 3列不能再安排其列不能再安排其它因素它因素 ,以免出现,以免出现“混杂混杂”。然后将。然后将C C放在第放在第4 4列,列,查表查表 可知,可知,BCBC应放在第应放在第6 6列,余下列为空列列,余下列为空列 ,如此可得表头,如此可得表头设计,见表设计,见表12-3112-31。第84页/共98页 (二二)列出试验方案列出试验方案 根据表头设计,将A、B、C各列对应的数字“1”、“2”换成各因素的具体水平,得出试验方案列于表12-32。第85页/共98页第86页/共98页 (三三)结果分析结果分析按表12-33所列的试验方案进行试验,其结果见表12-34。表中Ti、计算方法同前。此例为单独观测值正交试验,总变异划分为A因素、B因素、C因素、AB、BC、与误差变异5部分,平方和与自由度划分式为:SST=SSA+SSB+SSC+SSAB+SSBC+SSe dfT=dfA +dfB+dfC+dfAB+dfBC+dfe 第87页/共98页1 1、计算各项平方和与自由度计算各项平方和与自由度计算各项平方和与自由度计算各项平方和与自由度 矫正数矫正数C=TC=T2 2/n/n=665=6652 2/8=55278.1250/8=55278.1250总平方和总平方和SSSST T=x x2 2-C-C =55=552 2+38+382 2+61+612 2-55278.1250-55278.1250=6742.8750=6742.8750A A因素平方和因素平方和SSSSA A=T T2 2A A/a-C/a-C=(279=(2792 2+386+3862 2)/4)/4 -55278.1250=1431.1250 -55278.1250=1431.1250第88页/共98页 B因素平方和SSB=T2B/b-C =(3392+3262)/4-55278.1250 =21.1250 C因素平方和SSC=T2C/c-C =(3532+3122)/4-55278.1250 =210.1250 AB平方和SSAB=T2AB/4-C =(2332+4322)/4-55278.1250 =4950.1250第89页/共98页 BC平方和 SSBC =T2BC/4-C =(3272+3382)/4-55278.1250 =15.1250 误差平方和SSe=SST-SSA-SSB-SSAB-SSBC =6742.8750-1431.1250-21.1250 -210.1250-4950.1250-15.1250 =115.2500 第90页/共98页总自由度dfT=n-1=8-1=7各因素自由度dfA=dfB=dfC=2-1=1交互作用自由度dfAB=dfBC =(2-1)(2-1)=1误差自由度dfe=dfT-dfA-dfC-dfAB-dfBC =7-1-1-1-1-1 =2第91页/共98页*试验结果以对照为试验结果以对照为100100计。计。第92页/共98页 2、列出方差分析表,进行列出方差分析表,进行F检验检验 第93页/共98页 F检验结果表明:A因素和交互作用AB显著,B、C因素及BC交互作用不显著。因交互作用AB显著,应对A与B的水平组合进行多重比较,以选出A与B的最优水平组合。3、A与与B各水平组合的多重比较各水平组合的多重比较先计算出A与B各水平组合的平均数:A1B1水平组合的平均数=(55+38)/2=46.50 A1B2水平组合的平均数=(97+89)/2=93.00 A2B1水平组合的平均数=(122+124)/2=123.00 A2B2水平组合的平均数=(79+61)/2=70.00第94页/共98页 列出A、B因素各水平组合平均数多重比较表,见表12-35。第95页/共98页 因为 由dfe=2与k=2,3,4,查临界q值,并计算出LSR值,见表12-36。第96页/共98页 多重比较结果表明,A2B1显著优于A2B2,A1B1;A1B2显著优于A1B1,其余差异不显著。最优水平组合为A2B1。从以上分析可知,A因素取A2,B因素取B1,若C因素取C1,则本次试验结果的最优水平组合为A2B1C1。第97页/共98页感谢您的观看!第98页/共98页

    注意事项

    本文(正交试验设计原理与实例教程.pptx)为本站会员(莉***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开