欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    圆周率的历史.pptx

    • 资源ID:87179545       资源大小:225.25KB        全文页数:18页
    • 资源格式: PPTX        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    圆周率的历史.pptx

    圆周率是指平面上圆的周长与直径之比,是一个常数,用希腊字母 (读“Pi”)表示。在一般计算时,人们通常把这个无限不循环小数简化成3.14。圆周率是一个极其驰名的数,从有文字记载的历史开始,这个数就引进了外行人和学者们的兴趣。对它的研究,在一定程度上反映了这个地区或时代的数学水平,它的历史是饶有趣味的。在中国古代,圆周率还有圆率、周率、周等名称。目录1第1页/共18页1 圆周率的历史 2 圆周率的计算简史 3 (一)试验时期 4 (二)几何法时期 5 (三)分析法时期 6 (四)计算机时期7 割圆术 8 祖冲之的贡献9 背圆周率的口诀目录2第2页/共18页目录人类对圆周率的认识过程,反映了数学和计算技术发展情形的一个侧面。德国数学史家康托说:“历史上一个国家所算得的圆周率的准确程度,可以作为衡量这个国家当时数学发展水平的指标。”历史上曾采用过圆周率的多种近似值。古代巴比伦、印度、中国等长期使用=3这个数值。公元前2世纪,中国古算书周髀算经记载了“径一而周三”。十九世纪前,求圆周率的值一直是数学中的头号难题,计算进展相当缓慢。十九世纪后,计算圆周率的世界纪录频频创新。进入二十世纪,随着计算机的发明,圆周率的计算突飞猛进。借助于超级计算机,人们已经得到了圆周率的2061亿位精度。3第3页/共18页目录圆周率作为一个非常重要的常数,求出它的尽量准确的近似值是一个极其关键的问题。为求得圆周率的值,人类走过了漫长而曲折的道路。为了计算出圆周率的越来越好的近似值,古今中外一代代的数学家付出了自己的智慧和劳动,贡献了无数的时间与心血。圆周率的计算经历了几千年的历史,它的每一次重大进步,都标志着技术和算法的革新。以下是人们计算圆周率几个标志性的时期。4第4页/共18页早期的圆周率大都是通过实验而得到的结果,即基于对一个圆的周长和直径的实际测量而对圆周率进行估算。古埃及、古希腊人曾用谷粒摆在圆形上,以谷粒数与方形对比的方法取得数值。东、西汉之交的刘歆通过做实验,得到圆周率的近似值分别为3.1547、3.1992、3.1498、3.2031、比“径一周三”的古率有所进步。以观察或实验为根据所得到的圆周率是相当粗略的,如果主要用于估计田地面积等,对生产没有太大影响,但以此来制造器皿或其它计算就不合适了。目录5第5页/共18页目录第一个用科学方法寻求圆周率数值的人是阿基米德,他提出了一种能够借助数学过程而不是通过测量的、能够把 的值精确到任意精度的方法,开创了圆周率计算的几何方法(亦称古典割圆术)。阿基米德在他的论文圆的度量中,用圆内接和外切正多边形的周长确定圆周长的上下界,从正六边形开始,逐次加倍计算到正96边形,证明了(3+(10/71)(3+(1/7),得出精确到小数点后两位的值。公元150年左右,希腊天文学家托勒密得出 3.1416,取得了自阿基米德以来的巨大进步。6第6页/共18页目录17世纪出现了数学分析,这锐利的工具使得许多初等数学束手无策的问题迎刃而解。圆周率的计算历史也随之进入了一个新的阶段。这一时期人们开始摆脱求多边形周长的繁难计算,利用无穷级数或无穷连乘积来算的数值。1593年,韦达给出这一不寻常的公式,这是的最早分析表达式。甚至在今天,这个公式的优美也会令我们赞叹不已。它仅仅借助数字2,通过一系列的加、乘、除和开平方就可算出 值。此后,类似的公式不断涌现,的位数也迅速增长。圆周率的计算像马拉松式的竞赛,纪录一个接着一个地被刷新。1948年1月弗格森和伦奇两人共同发表有808位正确小数的,这是人工计算 的最高记录。7第7页/共18页目录1946年,世界第一台计算机制造成功,标志着人类历史迈入了电脑时代。计算机的发展一日千里,圆周率的记录也就被频频打破。20世纪50年代,人们借助计算机算得了10万位小数的,70年代算到了150万位,到90年代初,用新的计算方法,算到的 值已到4.8亿位。虽然计算机的计算速度超出任何人的想象,但毕竟还需要由数学家去编制程序,指导计算机正确运算。当我们把 的计算历史划分出一个电子计算机时期时,这并非意味着计算方法上的改进,而只是计算工具有了一个大飞跃而已。如何改进计算技术,研究出更好的计算公式,使公式收敛得更快、能极快地达到较大的精确度仍是数学家们面对的一个重要课题。圆周率的计算历史讲述的是人类的胜利,而不是机器的胜利。8第8页/共18页目录 公元263年前后,我国魏晋时期的数学家刘徽提出著名的割圆术,得出=3.14。后人为纪念刘徽的贡献,将3.14称为徽率。虽然割圆术提出的时间比阿基米德晚一些,但其方法却有更美妙之处。割圆术仅用内接正多边形就确定出了圆周率的上、下界,比阿基米德用内接同时又用外切正多边形简捷得多。刘徽还采用了一种绝妙的精加工办法,可以将割到192边形的几个粗糙的近似值通过简单的加权平均,就获得了具有4位有效数字的圆周率=3927/1250=3.1416,而仅通过割圆计算要得出这个结果,需要割到3072边形。这一神奇的精加工技术是割圆术中最为精彩的部分,令人遗憾的是,由于人们对它缺乏理解而被长期埋没了。9第9页/共18页目录祖冲之对圆周率所做出的贡献巨大,享有世界声誉:巴黎“发现宫”科学博物馆的墙壁上著文介绍了祖冲之求得的圆周率,莫斯科大学礼堂的走廊上镶嵌有祖冲之的大理石塑像,月球上有以祖冲之命名的环形山祖冲之按照刘徽的割圆术之法,设了一个直径为一丈的圆,在圆内切割计算。当他切割到圆的内接192边形时,得到了“徽率”的数值。但他没有满足,继续切割,作了384边形、768边形一直切割到24576边形,依次求出每个内接正多边形的边长。换句话说:如果圆的直径为1,那么圆周小于3.1415927、大大不到千万分之一,它们的提出,大大方便了计算和实际应用。D=1边长0.710.71412.84边长0.380.38813.04边长0.190.19161=3.0410第10页/共18页目录3 .1 4 1 5 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6 2 6三天一士一壶酒,尔乐苦煞吾,把酒吃,酒杀尔,杀不死,乐尔乐。4 3 3 8 3 2 7 9 5 0 2 8 8 4 1 9 7 1 6 9 3 9 9 3 7死珊珊,霸占二妻。救吾灵儿吧!不只要救妻,一路救三舅,救三妻。5 1 0 5 8 2 0 9 7 4 9 4 4 5 9 2 3 0 7 吾一拎我爸,二拎舅(其实就是撕吾舅耳)三拎妻。8 1 6 4 0 6 2 8 6 2 0 8 9 9 8 6不要溜!司令溜,儿不溜!儿拎爸,久久不溜!2 8 0 3 4 8 2 5 3 4 2 1 1 7 0 6 7 9 8饿不拎,闪死爸,而吾真是饿矣!要吃人肉?吃酒吧!(作者华罗庚)11第11页/共18页1214159265358979323846264338327950288419716939937510:5058209749445923078164062862089986280348253421170679:10082148086513282306647093844609550582231725359408128:15048111745028410270193852110555964462294895493038196:20044288109756659334461284756482337867831652712019091:25045648566923460348610454326648213393607260249141273:30072458700660631558817488152092096282925409171536436:35078925903600113305305488204665213841469519415116094:40033057270365759591953092186117381932611793105118548:45007446237996274956735188575272489122793818301194912:50098336733624406566430860213949463952247371907021798:55060943702770539217176293176752384674818467669405132:600第12页/共18页1300056812714526356082778577134275778960917363717872:65014684409012249534301465495853710507922796892589235:70042019956112129021960864034418159813629774771309960:75051870721134999999837297804995105973173281609631859:80050244594553469083026425223082533446850352619311881:85071010003137838752886587533208381420617177669147303:90059825349042875546873115956286388235378759375195778:95018577805321712268066130019278766111959092164201989:100038095257201065485863278865936153381827968230301952:105003530185296899577362259941389124972177528347913151:110055748572424541506959508295331168617278558890750983:115081754637464939319255060400927701671139009848824012:1200第13页/共18页1485836160356370766010471018194295559619894676783744:125094482553797747268471040475346462080466842590694912:130093313677028989152104752162056966024058038150193511:135025338243003558764024749647326391419927260426992279:140067823547816360093417216412199245863150302861829745:145055706749838505494588586926995690927210797509302955:150032116534498720275596023648066549911988183479775356:155063698074265425278625518184175746728909777727938000:160081647060016145249192173217214772350141441973568548:165016136115735255213347574184946843852332390739414333:170045477624168625189835694855620992192221842725502542:175056887671790494601653466804988627232791786085784383:1800第14页/共18页1582796797668145410095388378636095068006422512520511:185073929848960841284886269456042419652850222106611863:190006744278622039194945047123713786960956364371917287:195046776465757396241389086583264599581339047802759009:200094657640789512694683983525957098258226205224894077:205026719478268482601476990902640136394437455305068203:210049625245174939965143142980919065925093722169646151:215057098583874105978859597729754989301617539284681382:220068683868942774155991855925245953959431049972524680:225084598727364469584865383673622262609912460805124388:230043904512441365497627807977156914359977001296160894:235041694868555848406353422072225828488648158456028506:2400第15页/共18页1601684273945226746767889525213852254995466672782398:24502圆周率(20000位)64565961163548862305774564980355936345681743241125:250015076069479451096596094025228879710893145669136867:255022874894056010150330861792868092087476091782493858:260090097149096759852613655497818931297848216829989487:265022658804857564014270477555132379641451523746234364:270054285844479526586782105114135473573952311342716610:275021359695362314429524849371871101457654035902799344:280003742007310578539062198387447808478489683321445713:285086875194350643021845319104848100537061468067491927:290081911979399520614196634287544406437451237181921799:295098391015919561814675142691239748940907186494231961:3000第16页/共18页第17页/共18页感谢您的观看。第18页/共18页

    注意事项

    本文(圆周率的历史.pptx)为本站会员(莉***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开