二面角的平面角求法综合精选PPT.ppt
关于二面角的平面角求法关于二面角的平面角求法综合综合第1页,讲稿共39张,创作于星期一二面角的平面角二面角的平面角二面角的平面角二面角的平面角以二面角的棱上任意一点为端点,以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角这两条射线所成的角叫做二面角的平面角.O复习:复习:第2页,讲稿共39张,创作于星期一(1)(1)定义法定义法直接在二面角的棱上取一点直接在二面角的棱上取一点(特殊点)分别在两个半平面内作棱的垂线,(特殊点)分别在两个半平面内作棱的垂线,得到平面角得到平面角.二面角的求法二面角的求法第3页,讲稿共39张,创作于星期一(2)(2)三垂线法三垂线法利用三垂线定理或逆定利用三垂线定理或逆定理作出平面角,通过解直角三角形求角理作出平面角,通过解直角三角形求角的大小的大小.第4页,讲稿共39张,创作于星期一(3)(3)垂面法垂面法通过做二面角的棱的垂面,通过做二面角的棱的垂面,两条交线所成的角即为平面角两条交线所成的角即为平面角.第5页,讲稿共39张,创作于星期一ABDO(4)4)射影面积法射影面积法若多边形的面积是若多边形的面积是S,它在一个,它在一个平面上的射影图形面积是平面上的射影图形面积是S,则二面角,则二面角 的大小为的大小为COS S SCE第6页,讲稿共39张,创作于星期一2、两个平面的法向量的夹角与这两个平面所成的二面角的平面角有怎样的关系?探究准备:探究准备:答:相等或互补m互补互补相等相等m第7页,讲稿共39张,创作于星期一1、如如图图,AB是是圆圆的的直直径径,PA垂垂直直圆圆所所在在的的平平面面,C是是圆圆上上任任一一点点,则则二面角二面角P-BC-A的平面角为的平面角为:A.ABP B.ACP C.都不是都不是 练 习2、已已知知P为为二二面面角角 内内一一点点,且且P到到两两个个半半平平面面的的距距离离都都等等于于P到到棱棱的的距距离离的的一一半半,则则这这个个二二面角的度数是多少?面角的度数是多少?pABOABCP60二面角第8页,讲稿共39张,创作于星期一例例1.如如图图,已已知知P是是二二面面角角-AB-棱棱上上一一点点,过过P分分别别在在、内内引引射射线线PM、PN,且且MPN=60 BPM=BPN=45,求此二面角的度数。求此二面角的度数。ABPMNCDO解解:在PB上取不同于P 的一点O,在内过O作OCAB交PM于C,在内作ODAB交PN于D,连CD,可得COD是二面角-AB-的平面角设PO=a,BPM=BPN=45CO=a,DO=a,PC a,PD a又MPN=60 CD=PC aCOD=90因此,二面角的度数为因此,二面角的度数为90aOPC二面角第9页,讲稿共39张,创作于星期一例例2如如图图P为为二二面面角角内内一一点点,PA,PB,且且PA=5,PB=8,AB=7,求这二面角的度数。,求这二面角的度数。过过PA、PB的平面的平面PAB与与 棱棱 交于交于O点点PA PA PB PB 平面PABAOB为二面角的平面角又PA=5,PB=8,AB=7由余弦定理得由余弦定理得P=60 AOB=120 这二面角的度数为这二面角的度数为120解:解:ABPO二面角第10页,讲稿共39张,创作于星期一OABPC取取AB 的中点为的中点为E,连连PE,OEO为为 AC 中点中点,ABC=90OEBC且且 OE BC在RtPOE中,OE ,PO 所求的二面角所求的二面角P-AB-C 的正切值为的正切值为例例3如如图图,三三棱棱锥锥P-ABC的的顶顶点点P在在底底面面ABC上上的的射射影影是是底底面面RtABC斜斜边边AC的的中中点点O,若若PB=AB=1,BC=,求求二二面面角角P-AB-C的正切值的正切值。PEO为二面角为二面角P-AB-C 的平面角的平面角在在RtPBE中中,BE ,PB=1,PEOEAB,因此因此 PEABE解:解:EOP二面角第11页,讲稿共39张,创作于星期一练练习习1:已已知知RtABC在在平平面面内内,斜斜边边AB在在30的的二二面面角角-AB-的的棱棱上上,若若AC=5,BC=12,求求点点C到到平平面面的距离的距离CO。ACBOD练练 习习 2:在在 平平 面面 四四 边边 形形 ABCD中中,AB=BC=2,AD=CD=,B=120;将将三三角角形形ABC沿沿四四边边形形ABCD的的对对角角线线AC折折起起来来,使使DB=,求求AB C所所在平面与在平面与ADC所在平面所成二面角的平面角的度数。所在平面所成二面角的平面角的度数。ABCBDO二面角第12页,讲稿共39张,创作于星期一探究一:试一试:例1、如图:在三棱锥S-ABC中,SA平面ABC,ABBC,DE垂直平分SC,分别交AC、SC于D、E,且SA=AB=a,BC=a.求:平面BDE和平面BDC所成的二面角的大小。SAECBD第13页,讲稿共39张,创作于星期一分析分析:1、根据已知条件提供的数量关系通过计算证明有关线线垂直;2、利用已得的垂直关系找出二面角的平面角。解:如图:SA 平面ABC,SAAB,SAAC,SA BD;于是SB=a又BC=a,SB=BC;E为SC的中点,BESC 又DESC 故SC平面BDE可得BDSC 又BDSA BD平面SAC CDE为平面BDE和平面BDC所成 二面角的平面角。ABBC,AC=a 在直角三角形SAC中,tanSCA=SCA=300,CDE=900-SCA=600 解毕。议一议:刚才的证明过程中,是用什么方法找到二面角的平面角的?请各小组讨论交流一下。SECABD第14页,讲稿共39张,创作于星期一探究二:试一试例二:如图:直四棱柱ABCD-A1B1C1D1,底面ABCD是菱形,AD=AA1,DAB=600,F为棱AA1的中点。求:平面BFD1与平面ABCD所成的二面角的大小。A1D1C1B1ADCBF要求要求:1、各人思考;2、小组讨论;3、小组交流展示;4、总结。第15页,讲稿共39张,创作于星期一A1D1C1CB1BDAPF如图:延长D1F交DA的延长线于点P,连接PB,则直线PB就是平面BFD1与平面ABCD的交线。F是AA1的中点,可得A也是PD的中点,AP=AB,又 DAB=600,且底面ABCD是菱形,可得正三角形ABD,故DBA=600,P=ABP=300,DBP=900,即PBDB;又因为是直棱柱,DD1 PB,PB面DD1B,故 DBD1就是二面角D1-PB-D的平面角。显然BD=AD=DD1,DBD1=450。即为所求.解毕。解法一:解法一:第16页,讲稿共39张,创作于星期一A1D1C1B1FADCBPE解法二:解法二:如图:延长D1F交DA的延长线于点P,连接PB,则直线PB就是平面BFD1与平面ABCD的交线;因为是直棱柱,所以AA1 底面ABCD,过A做AEPB,垂足为E,连接EF,由三垂线定理可知,EFPB,AEF即为二面角D1-PB-D的平面角;同解法一可知,等腰APB,P=300,RtAPB中,可求得AE=1,(设四棱柱的棱长为2)又AF=1,AEF=450,即为所求。思考思考:这种解法同解法一有什么异同?第17页,讲稿共39张,创作于星期一解法三:解法三:法向量法:建系如图:设这个四棱柱各棱长均为2.则D(0,0,0)D1(0,0,2)B(1,0)F(-1,1)=(-2,0,1)=(1,-2)显然,就是平面ABCD的法向量,再设平面BDD1的一个法向量为向量 =(x0,y0,z0)。则 且 2x0+0y0-z0=0且x0+y0-2z0=0令x0=1可得z0=2,y0=,即 =(1,2)设所求二面角的平面角为,则COS=,所以所求二面角大小为450解毕A1D1C1B1ABCDxyzF第18页,讲稿共39张,创作于星期一解法四:解法四:A1D1C1B1FCBDA如图:由题意可知,这是一个直四棱柱,BFD1在底面上的射影三角形就是ABD,故由射影面积关系可得COS=ABDB1 (是所求二面角的平面角)以下求面积略。点评:这种解法叫做“射影面积法”在选择和填空题中有时候用起来会很好第19页,讲稿共39张,创作于星期一第20页,讲稿共39张,创作于星期一 三垂线法三垂线法第21页,讲稿共39张,创作于星期一NMAP 三垂线法三垂线法BACDP第22页,讲稿共39张,创作于星期一点点O在二面角内在二面角内垂面法垂面法第23页,讲稿共39张,创作于星期一第24页,讲稿共39张,创作于星期一第25页,讲稿共39张,创作于星期一ABCDA1B1C1D1MABCDA1B1C1D1M第26页,讲稿共39张,创作于星期一M例例1.(06年江西卷)如图,在三棱锥年江西卷)如图,在三棱锥ABCD中,侧中,侧面面ABD、ACD是全等的直角三角形,是全等的直角三角形,AD是公共的斜是公共的斜边,且边,且AD,BDCD1,另一个侧面是正三,另一个侧面是正三角形,求二面角角形,求二面角BACD的大小的大小.ABCDN第27页,讲稿共39张,创作于星期一 第28页,讲稿共39张,创作于星期一PEDACBD1A1C1B1F例例2.正方体正方体ABCDA1B1C1D1的棱长为的棱长为1,P是是AD的中点的中点,求二面角求二面角ABD1P的大小的大小.第29页,讲稿共39张,创作于星期一例例3、(高考题高考题)ABC中,中,ABBC,SA 平面平面ABC,DE垂直平分垂直平分SC,又又SAAB,SBBC,(1)求证:)求证:SC 平面平面BDE,(2)求二面角求二面角EBDC的大小的大小?SABCED第30页,讲稿共39张,创作于星期一SABCED第31页,讲稿共39张,创作于星期一ABDCA1B1D1C1在在正方体正方体ABCDA1B1C1D1中,中,求二面角求二面角D1ACD的大小?的大小?O第32页,讲稿共39张,创作于星期一总一总总一总:求二面角的方法你都学会了哪些?每一种方法在使用上要注意什么问题?请同学们先自己思考,然后小组内交流学习一下。第33页,讲稿共39张,创作于星期一二面角的几种主要常用的求法:1 1、垂面法、垂面法。见例一和例二的解法一;2 2、三垂线法。、三垂线法。见例二的解法二;见例二的解法二;3 3、射影面积法。、射影面积法。见例二的解法三;4 4、法向量夹角法。、法向量夹角法。见例二的解法四。其中垂面法和三垂线法也是直接找平面角的方法,也称为 直接法;射影面积法和法向量法是没有找出平面角而求之的方法,也称之为 间接法。第34页,讲稿共39张,创作于星期一 这几种方法是现在求二面角的常用的方法,在高考中经常被考查;尤其是向量法,更有着广泛的被考查性,在应用的时候主要注意以下两点:1、合理建系合理建系。本着“左右对称左右对称 就地取材就地取材”的建系原则。2、视图取角视图取角。由于法向量的取定有人为的因素,其夹角不一定正好是二面角的平面交的大小,我们要视原图形的情况和题意条件进行正确的选择大小,即要么是这个角,要么是它的补角。点点 评评第35页,讲稿共39张,创作于星期一试一试:例1、如图:在三棱锥S-ABC中,SA平面ABC,ABBC,DE垂直平分SC,分别交AC、SC于D、E,且SA=AB=a,BC=a.求:平面BDE和平面BDC所成的二面角的大小。SAECBD请同学们将刚才的例一用其他方法试一下:第36页,讲稿共39张,创作于星期一规范训练一规范训练一1、(本小题为2007年山东高考试卷理科19题)如图,在直四棱柱 ABCD-A1B1C1D1中,已知:DC=DC1=2AD=2AB,ADDC,AB/DC()设E是DC的中点,求证:D1E/平面A1BD;()求二面角 A1-BD-C1余弦值。第37页,讲稿共39张,创作于星期一规范训练二:规范训练二:2、(本小题为2008年山东高考理科试卷20题)如图,已知四棱锥P-ABCD,底面ABCD 为菱形,PA 平面 ABCD,ABC=600,E、F分别是BC、PC 的中点()证明:AEPD;()若 H为 PD上的动点,EH 与平面PAD 所成最大角的正切值为 ,求二面角E-AF-C 的余弦值第38页,讲稿共39张,创作于星期一2023/4/72023/4/7感感谢谢大大家家观观看看第39页,讲稿共39张,创作于星期一