函数的对称性与函数的图象变换 (2)精选PPT.ppt
关于函数的对称性与函数的图象变换(2)第1页,讲稿共34张,创作于星期日1-3-1-2165432-xx78(偶函数)(偶函数)Y=f(x)图像关于直线图像关于直线x=0对称对称知识回顾知识回顾l从从”形形”的角度看,的角度看,l从从”数数”的角度看,的角度看,f(-x)=f(x)XY第2页,讲稿共34张,创作于星期日1-3-1-216543278 f(x)=f(4-x)f(1)=f(0)=f(-2)=f(310)=f(6)f(4-310)0 x4-xY=f(x)图像关于直线图像关于直线x=2对称对称f(3)f(4)l从从”形形”的角度看,的角度看,l从从”数数”的角度看,的角度看,xy第3页,讲稿共34张,创作于星期日1 f(1+x)=f(3-x)f(2+x)=f(2-x)f(x)=f(4-x)对于任意的对于任意的x你还能得到怎样的等式?你还能得到怎样的等式?l从从”形形”的角度看,的角度看,l从从”数数”的角度看,的角度看,Y=f(x)图像关于直线图像关于直线x=2对称对称1-3-1-26543270 x4-xYx第4页,讲稿共34张,创作于星期日-2-x1-3-1-216543278x=-1 f(x)=f(-2-x)x思考思考?若若y=f(x)图像关于直线图像关于直线x=-1对称对称Yx第5页,讲稿共34张,创作于星期日-1+x-1-x1-3-1-216543278x=-1 f(-1+x)=f(-1-x)思考思考?若若y=f(x)图像关于直线图像关于直线x=-1对称对称 f(x)=f(-2-x)Yx第6页,讲稿共34张,创作于星期日1若若y=f(x)图像关于直线图像关于直线x=a对称对称 f(x)=f(2a-x)f(a-x)=f(a+x)第7页,讲稿共34张,创作于星期日ly=f(x)图像关于直线图像关于直线x=a对称对称 f(x)=f(2a-x)f(a-x)=f(a+x)ly=f(x)图像关于直线图像关于直线x=0对称对称 f(x)=f(-x)特例:特例:a=0轴对称性轴对称性思考?思考?若若y=f(x)满足满足f(a-x)=f(b+x),则函数图像关于则函数图像关于 对称对称 a+b2x=直线直线第10页,讲稿共34张,创作于星期日-xxxyof(-x)=-f(x)y=f(x)图像关于图像关于(0,0)中心对称中心对称中心对称性中心对称性类比探究类比探究 al从从”形形”的角度看,的角度看,l从从”数数”的角度看,的角度看,第11页,讲稿共34张,创作于星期日f(x)=-f(2a-x)xyo a y=f(x)图像关于图像关于(a,0)中心对称中心对称l从从”形形”的角度看,的角度看,l从从”数数”的角度看,的角度看,中心对称性中心对称性类比探究类比探究x2a-x第12页,讲稿共34张,创作于星期日f(x)=-f(2a-x)f(a-x)=-f(a+x)xyo al从从”形形”的角度看,的角度看,l从从”数数”的角度看,的角度看,中心对称性中心对称性类比探究类比探究 a+x a-x y=f(x)图像关于图像关于(a,0)中心对称中心对称b第13页,讲稿共34张,创作于星期日af(a+x)=2b-f(a-x)f(2a-x)=2b-f(x)b中心对称性中心对称性 y=f(x)图像关于图像关于(a,b)中心对称中心对称类比探究类比探究xyo第14页,讲稿共34张,创作于星期日思考?思考?(1)若若y=f(x)满足满足f(a-x)=-f(b+x),(2)若若y=f(x)满足满足f(a-x)=2c-f(b+x),则函数图像关于则函数图像关于 对称对称 a+b2(,0)点点则函数图像关于则函数图像关于 对称对称 a+b2(,C)点点第15页,讲稿共34张,创作于星期日-x x 函数图像关于直线函数图像关于直线x=0对称对称f(-x)=f(x)函数图像关于直线函数图像关于直线x=a对称对称f(a-x)=f(a+x)x=af(x)=f(2a-x)函数图像关于函数图像关于(0,0)中心对称中心对称函数图像关于函数图像关于(a,0)中心对称中心对称f(-x)=-f(x)f(a-x)=-f(a+x)f(x)=-f(2a-x)轴对称轴对称中心对称性中心对称性a第16页,讲稿共34张,创作于星期日练习练习:(1)若若y=f(x)满足满足f(-2-x)=f(-2+x),则函数图像关于则函数图像关于 对称对称(2)若若y=f(x)满足满足f(3-x)=f(4+x)(4)若若y=f(x)满足满足f(3-x)=-f(4+x)(3)若若y=f(x)满足满足f(-2-x)=-f(-2+x),(5)若若y=f(x)满足满足f(3-x)=3-f(4+x)第17页,讲稿共34张,创作于星期日 函数图象是研究函函数图象是研究函数的重要工具数的重要工具,它能为所它能为所研究函数的数量关系及研究函数的数量关系及其图象特征提供一种其图象特征提供一种”形形”的直观体现的直观体现,是利用是利用”数数形结合形结合”解题的重要基础解题的重要基础.第18页,讲稿共34张,创作于星期日描绘函数图象的两种基本方法描绘函数图象的两种基本方法:描点法描点法;(通过列表通过列表描点描点连线三个步骤完成连线三个步骤完成)图象变换图象变换;(即一个图象经过变换得到另一个与即一个图象经过变换得到另一个与之相关的函数图象的方法之相关的函数图象的方法)函数图象的三大变换函数图象的三大变换平移对称对称伸缩伸缩第19页,讲稿共34张,创作于星期日问题问题1:如何由:如何由f(x)=x2的图象得到下列各函数的图象得到下列各函数的图象?的图象?(1)f(x-1)=(x-1)2(2)f(x+1)=(x+1)2(3)f(x)+1=x2+1(4)f(x)-1=x2-1Oyxy=f(x-1)y=f(x+1)y=f(x)-1y=f(x)+1函数图象的平移变换:函数图象的平移变换:左右平移左右平移y=f(x)y=f(x)y=f(x+a)y=f(x+a)a0,向左平移a个单位a0,向右平移|a|个单位上下平移y=f(x)y=f(x)y=f(x)+ky=f(x)+kk0,向上平移k个单位11-1-1第20页,讲稿共34张,创作于星期日同步练习同步练习:若函数若函数f(x)恒过定点恒过定点(1,1),则函数则函数f(x-4)-2恒过恒过定点定点 .若函数若函数f(x)关于直线关于直线x=1对称对称,则函数则函数f(x-4)-2关于直线关于直线 对称对称.(5,-1)x=5第21页,讲稿共34张,创作于星期日问题问题2.设f(x)=(x0),求函数y=-f(x)、y=f(-x)、y=-f(-x)的解析式及其定义域,并分别作出它们的图象。x xyo1y=f(x)x xyo1y=f(x)x xyo1y=f(x)y=-f(x)y=f(-x)y=-f(-x)对对称称变变换换(1)y=f(x)与与y=f(-x)的图象关于的图象关于 对称;对称;(2)y=f(x)与与y=-f(x)的图象关于的图象关于 对称;对称;(3)y=f(x)与与y=-f(-x)的图象关于的图象关于 对称;对称;x 轴y 轴原 点 第22页,讲稿共34张,创作于星期日练习:说出下列函数的图象与指数函数练习:说出下列函数的图象与指数函数y=2y=2x x的图象的图象的关系,并画出它们的示意图的关系,并画出它们的示意图.(1)y=2-x(2)y=-2x(3)y=-2-xOyOyOy11-11-1xxx第23页,讲稿共34张,创作于星期日1.函数函数y=f(-x)与函数与函数y=f(x)的图像关于的图像关于y轴对称轴对称2.函数函数y=-f(x)与函数与函数y=f(x)的图像关于的图像关于x轴对称轴对称3.函数函数y=-f(-x)与函数与函数y=f(x)的图像关于原点对称的图像关于原点对称4.函数函数y=f(x)与函数与函数y=f(2a-x)的图像关于直线的图像关于直线 对称对称函数图象对称变换的规律函数图象对称变换的规律:思考思考:“函数函数y=f(x)与函数与函数y=f(2a-x)的图像关于直线的图像关于直线x=a对称对称”与与“函数函数y=f(x)满足满足f(x)=f(2a-x),则函数则函数y=f(x)关于直线关于直线x=a对称对称”两者间两者间有何区别有何区别?对称变换是指对称变换是指两个两个函数图象之间的对称关系函数图象之间的对称关系,而而”满足满足f(x)=f(2a-x)或或f(a+x)=f(a-x)有有y=f(x)关于直线关于直线x=a对称对称”是指是指一个一个函数自身的性质函数自身的性质属性属性,两者不可混为一谈两者不可混为一谈.x=a第24页,讲稿共34张,创作于星期日问题问题3:分别在同一坐标系中作出下列各组函:分别在同一坐标系中作出下列各组函数的图象,并说明它们之间有什么关系?数的图象,并说明它们之间有什么关系?(1)y=2x与与y=2|x|Oxy由由y=f(x)的图象作的图象作y=f(|x|)的图象:的图象:y=2x 保留保留y=f(x)中中y轴右侧部分,再轴右侧部分,再加上加上y轴右侧部分轴右侧部分关于关于y轴对称的图轴对称的图形形.1y=2|x|第25页,讲稿共34张,创作于星期日Oyx-414-1由由y=f(x)的图象作的图象作y=|f(x)|的图象:的图象:保留保留y =f(x)在在 x 轴上轴上方部分,再加上方部分,再加上x轴轴下下方部分关于方部分关于x轴对称到轴对称到上方的图形上方的图形第26页,讲稿共34张,创作于星期日函数图象的对称变换规律:函数图象的对称变换规律:(1)y=f(x)y=f(x+a)a0,a0,向左平移向左平移a a个单位个单位a0,a0,k0,向上平移向上平移k k个单位个单位k0,k0,向下平移向下平移|k|k|个单位个单位(1)y=f(x)与与y=-f(x)的图象关于的图象关于 对称;对称;(2)y=f(x)与与y=f(-x)的图象关于的图象关于 对称;对称;(3)y=f(x)与与y=-f(-x)的图象关于的图象关于 对称;对称;函数图象的平移变换规律:函数图象的平移变换规律:(4)(4)由由y=f(x)y=f(x)的图象作的图象作y=f(|x|)y=f(|x|)的图象:保留的图象:保留y=f(x)y=f(x)中中 部分,再加上这部分关于部分,再加上这部分关于 对称的图形对称的图形.(6)(6)由由y=f(x)y=f(x)的图象作的图象作y=|f(x)|y=|f(x)|的图象:保留的图象:保留y=f(x)y=f(x)中中 部分,再加上部分,再加上x x轴下方部分关于轴下方部分关于 对称的图形对称的图形.x轴轴y轴轴原点原点y y轴右侧轴右侧y y轴轴x x轴上方轴上方x x轴轴左右平移第27页,讲稿共34张,创作于星期日 练习:已知函数y=f(x)的图象如图所,分别画出下列函数的图象:yox1-1-212-0.5(1)y=f(-x);(2)y=-f(x).yox1-1-212-0.5 y=f(-x)yox-1-1-2120.5 y=-f(x)(3)y=f(|x|);(4)y=|f(x)|.第28页,讲稿共34张,创作于星期日 练习:已知函数y=f(x)的图象如图所,分别画出下列函数的图象:yox1-1-212-0.5(1)y=f(-x);(2)y=-f(x).(3)y=f(|x|);(4)y=|f(x)|.yox1-1-212-0.5yox1-1-212-0.5第29页,讲稿共34张,创作于星期日例例1.将函数将函数y=2-2x的图象向左平移的图象向左平移1个单位,再作关于原点个单位,再作关于原点对称的图形后对称的图形后.求所得图象对应的函数解析式求所得图象对应的函数解析式.y=2-2xy=2-2(x+1)-y=2-2(-x+1)y=-22x-2向左平移向左平移1个单位个单位关于原点对称关于原点对称x换成换成-xy换成换成-yx 换成换成 x+1第30页,讲稿共34张,创作于星期日例例2.已知函数已知函数y=|2x-2|(1)作出函数的图象;)作出函数的图象;(2)指出函数)指出函数 的单调区间;的单调区间;(3)指出)指出x取何值时,函数有最值。取何值时,函数有最值。Oxy3211-1y=2x y=2x-2 y=|2x-2|y=|2x-2|第31页,讲稿共34张,创作于星期日例例2.已知函数已知函数y=|2x-2|(1)作出函数的图象;)作出函数的图象;(2)指出函数)指出函数 的单调区间;的单调区间;(3)指出)指出x取何值时,函数有最值。取何值时,函数有最值。Oxy3211-1y=|2x-2|第32页,讲稿共34张,创作于星期日例例3.已知函数已知函数y=|2x-2|(1)作出函数的图象;)作出函数的图象;(2)指出函数)指出函数 的单调区间;的单调区间;(3)指出)指出x取何值时,函数有最值。取何值时,函数有最值。变式变式2:已知函数已知函数f(x)=2x-2,作出作出y=|f(|x|)|图象图象第33页,讲稿共34张,创作于星期日感感谢谢大大家家观观看看09.04.2023第34页,讲稿共34张,创作于星期日