现代材料加工力学-第六章.pptx
6.1 塑性变形的力学特点塑性变形的力学特点(回顾回顾)6.1.1 变形力学特点变形力学特点(与弹性变形相比与弹性变形相比)1.(弹塑性共存)(弹塑性共存)线性函数线性函数 非线性函数非线性函数 2.塑性变形阶段塑性变形阶段 加载阶段加载阶段 非线性变形阶段非线性变形阶段 卸载阶段卸载阶段 线性变形阶段线性变形阶段0.20.2对应于对应于0.2%的永久应变时的应力,作的永久应变时的应力,作为条件屈服限。为条件屈服限。第1页/共43页 3.存在加工硬化(硬化指数存在加工硬化(硬化指数n),组织劣化,组织劣化加工硬化加工硬化 (变形抗力变形抗力)4.塑性变形的应力塑性变形的应力应变关系与加载历史有关应变关系与加载历史有关 5.使变形材料的组织与性能发生变化使变形材料的组织与性能发生变化 defects,dislocation,texture,phases,matrix 6.变形机理:滑移,孪生,晶界机制,扩散机制变形机理:滑移,孪生,晶界机制,扩散机制 弹性变形的本质是弹性变形的本质是 原子间距的变化。原子间距的变化。第2页/共43页6.1.2 本构方程本构方程 材料在外力作用下的材料在外力作用下的 或或 的关系方程,反映变形的关系方程,反映变形体的物理本质。体的物理本质。1.各向同性弹性体的广义虎克定律:各向同性弹性体的广义虎克定律:(单向受力状态)(单向受力状态)第3页/共43页也即也即各向同性材料(各向同性材料(isotropic materials)Eelastic modulus Possons ratio 反过来,反过来,柔度矩阵柔度矩阵 刚度矩阵刚度矩阵且有:且有:G=E/2(1+)第4页/共43页 2.各向异性弹性体的广义虎克定律各向异性弹性体的广义虎克定律在线性弹性体中,物体的应力与应变关系服从广义虎克定律。根据在线性弹性体中,物体的应力与应变关系服从广义虎克定律。根据这个定律,在物体的任何一点上,这个定律,在物体的任何一点上,6个应力量中的每一个分量都个应力量中的每一个分量都可以表示成可以表示成6个应变分量的线性函数,即个应变分量的线性函数,即 式中式中 为材料的弹性常数。为材料的弹性常数。应该指出:由于弹性体存在变形能,弹性常数应满足对称性,应该指出:由于弹性体存在变形能,弹性常数应满足对称性,所以物体即使是在各向异性的最一般情况下,独立的弹性常数所以物体即使是在各向异性的最一般情况下,独立的弹性常数只有只有21个。个。第5页/共43页3.正交各向异性弹性体的广义虎克定律正交各向异性弹性体的广义虎克定律 正交各向异性弹性体的柔度矩阵为正交各向异性弹性体的柔度矩阵为其中其中 依次为依次为2-3,3-1,1-2平面的剪切模量。平面的剪切模量。分别为分别为1,2,3方向上的弹性模量。方向上的弹性模量。为应力在为应力在 i 方向作用时方向作用时 j 方向的横向应变的泊松比,方向的横向应变的泊松比,即即 对于正交各向异性材料,只有对于正交各向异性材料,只有9个独立常数,因为个独立常数,因为第6页/共43页4.塑性变形塑性变形:(后面详述)(后面详述)5.塑性变形本构关系:塑性变形本构关系:应变速度敏感指数应变速度敏感指数 此即此即Backfon公式,主要应用于超塑性变形。公式,主要应用于超塑性变形。第7页/共43页n6.1.3 基本假设与材料模型基本假设与材料模型 1.基本假设基本假设 a.变形材料均质、连续、各向同性;变形材料均质、连续、各向同性;b.静水压力不影响材料静水压力不影响材料 的大小;的大小;c.拉伸与压缩的拉伸与压缩的 相同(即不计包辛格效应)相同(即不计包辛格效应)2.材料变形模型材料变形模型理想弹塑性材料理想弹塑性材料(例如热轧)(例如热轧)理想刚塑性材料理想刚塑性材料 (例如热挤压)(例如热挤压)线性硬化弹塑性线性硬化弹塑性材料材料(例如冷变形)(例如冷变形)第8页/共43页线性硬化刚塑性线性硬化刚塑性材料材料一般硬化材料一般硬化材料粘塑性材料粘塑性材料第9页/共43页6.2 屈服条件屈服条件(塑性条件塑性条件)n定义定义:材料从弹性变形状态进入塑性变形状态,并使塑性变形继材料从弹性变形状态进入塑性变形状态,并使塑性变形继续进行的力学条件。续进行的力学条件。例如例如:单向拉伸:单向拉伸:时材料开始屈服。时材料开始屈服。多向变形:多向变形:(i,j=1,2,3)更一般的更一般的 屈服函数,在应力空间构成一个屈服面。屈服函数,在应力空间构成一个屈服面。描述这个屈服面的数学表达式称为屈服函数或屈服条件。描述这个屈服面的数学表达式称为屈服函数或屈服条件。建立建立 ,有两种方法:,有两种方法:数理逻辑推理(预测数理逻辑推理(预测实验验证)实验验证)实验研究(理论原理实验研究(理论原理揭示实质揭示实质获得经验公式)获得经验公式)(i,j=x,y,z)第10页/共43页n实验研究方法:实验研究方法:Tresca屈服准则屈服准则 1864年法国工程师年法国工程师Tresca在研究单向拉伸时发现金属表面出现吕在研究单向拉伸时发现金属表面出现吕德斯带(与拉伸方向成德斯带(与拉伸方向成45o),其后在压缩、剪切、挤压(挤铅管),其后在压缩、剪切、挤压(挤铅管)等实验中也出现类似现象。于是作了一系列的挤压实验来研究屈等实验中也出现类似现象。于是作了一系列的挤压实验来研究屈服条件,发现从金属变形上来看,可以在变形表面看到很细的痕服条件,发现从金属变形上来看,可以在变形表面看到很细的痕迹,而这些痕纹的方向很接近由最大剪切应力所引起的晶体网格迹,而这些痕纹的方向很接近由最大剪切应力所引起的晶体网格的滑移线。于是的滑移线。于是Tresca认为,当最大剪切应力达到某一极限值时,认为,当最大剪切应力达到某一极限值时,材料即进入塑性状态。这个条件可以写成如下公式:材料即进入塑性状态。这个条件可以写成如下公式:这就是这就是Tresca屈服准则(最大剪应力准则,第屈服准则(最大剪应力准则,第3强度理论)强度理论)或写成或写成第11页/共43页n数理逻辑推理:数理逻辑推理:Mises屈服准则屈服准则 1913年,年,Mises曾指出,在曾指出,在 的平面(的平面(平面)平面)上上Tresca六边形的六个顶点是由实验得到的,但是连接六个点的六边形的六个顶点是由实验得到的,但是连接六个点的直线却是假设的。这种假设是否合理尚需证明。他认为,如果用直线却是假设的。这种假设是否合理尚需证明。他认为,如果用一个圆来连接这六个点可能更合理,而且又可以避免由于曲线不一个圆来连接这六个点可能更合理,而且又可以避免由于曲线不光滑而产生数学上的困难。他认为光滑而产生数学上的困难。他认为Tresca条件是个准确的条件,条件是个准确的条件,而他的条件却是个近似的条件。而他的条件却是个近似的条件。Mises条件是一个垂直于条件是一个垂直于平面的平面的圆柱面,在圆柱面,在 平面上则是个椭圆。平面上则是个椭圆。Mises屈服准则的提出:屈服准则的提出:单项拉伸:单项拉伸:得到得到第12页/共43页 多向变形:多向变形:,有有6个独立分量。个独立分量。由于不计包申格效应,故由于不计包申格效应,故 应为偶函数(拉伸和压缩时应为偶函数(拉伸和压缩时s相同)相同)。(应力偏量影响形状改变和塑性变形相关)(应力偏量影响形状改变和塑性变形相关)(I1,I2,I3 是点的应力状态改变的确定判据)是点的应力状态改变的确定判据)而而(奇函数)(奇函数)第13页/共43页将单向拉伸屈服条件代入,则有将单向拉伸屈服条件代入,则有 既既Misese屈服条件(歪形能定理,第四强度理论)屈服条件(歪形能定理,第四强度理论)第14页/共43页n两种准则的比较两种准则的比较 1.区别区别 表达式不同:表达式不同:物理含义不同:物理含义不同:Tresca最大剪切应力到某极限最大剪切应力到某极限 Mises形状变形能到某极限形状变形能到某极限 对中间主应力的考虑不同:对中间主应力的考虑不同:Trseca只有最大和最小主应力对屈服有只有最大和最小主应力对屈服有 影响影响 Mises 三个主应力对屈服都有影响三个主应力对屈服都有影响 几何表达不同几何表达不同第15页/共43页第16页/共43页2.联系联系几何上:内接关系,两种准则有六个点重合。几何上:内接关系,两种准则有六个点重合。表达式上:表达式上:(为中间应力影响系数,为中间应力影响系数,为为lode参数参数)第17页/共43页n应变硬化材料的屈服准则应变硬化材料的屈服准则 随着随着的提高,的提高,T T也提高。也提高。等强硬化准则:等强硬化准则:同心圆同心圆等强强化。等强强化。(后继加载曲面)(后继加载曲面)移动强化(复杂)移动强化(复杂)略略第18页/共43页n双剪应力屈服准则双剪应力屈服准则(有意可参考(有意可参考双剪理论双剪理论俞茂宏著,俞茂宏著,52.55)或或 回顾:主剪切应力在主应力空间是(回顾:主剪切应力在主应力空间是(110)面族。)面族。如果:如果:材料屈服材料屈服材料屈服材料屈服第19页/共43页 当当b=0时:时:(Tresca准则)准则)当当b=1时:时:或或 即当两个较大的主剪切应力之和达到某一极限时材料屈服即当两个较大的主剪切应力之和达到某一极限时材料屈服 第20页/共43页 即即 时,材料屈服。时,材料屈服。或或 时材料屈服时材料屈服nHill准则(后节详述)准则(后节详述)第21页/共43页6.3 塑性本构方程塑性本构方程 引言引言 回顾:回顾:1)塑性变形过程的特点)塑性变形过程的特点 2)塑性变形过程与加载历史(路径)的关系)塑性变形过程与加载历史(路径)的关系 增量理论增量理论1Levy-Mises增量理论增量理论 Levy-Mises增量理论包括以下假设:增量理论包括以下假设:(1)材料是刚塑性体。)材料是刚塑性体。(2)材料符合)材料符合Mises塑性条件。塑性条件。(3)塑性变形时体积不变,即)塑性变形时体积不变,即 。(4)应变增量主轴与偏应力主轴相重合。)应变增量主轴与偏应力主轴相重合。(5)式中式中d为瞬时非负比例系数,它在加载过程中是变化的。经数学推为瞬时非负比例系数,它在加载过程中是变化的。经数学推导和整理,可得:导和整理,可得:第22页/共43页于是可得出类似广义于是可得出类似广义Hooke定律的塑性本构方程:定律的塑性本构方程:式中,式中,类似于弹性模量与剪切模量。类似于弹性模量与剪切模量。第23页/共43页 应当指出的是,应当指出的是,Levy-Mises增量理论对于理想增量理论对于理想材料而言,若已知材料而言,若已知ij只能求出只能求出dij之间的比值,之间的比值,而无法求出它们的值。若已知而无法求出它们的值。若已知dij,只能求出,只能求出 ,而无法求出而无法求出ij,这是该理论的主要缺陷。,这是该理论的主要缺陷。对于强化材料(应力与应变一一对应)而言,对于强化材料(应力与应变一一对应)而言,若已知若已知ij,要求出,要求出dij之间的比值,则必须给出之间的比值,则必须给出d ij;若已知若已知dij,在给出了,在给出了ij的条件下,也只的条件下,也只能求出能求出 。第24页/共43页2Saint-Venant塑性流动理论(应力应变速率关系方程)塑性流动理论(应力应变速率关系方程)假设条件几乎同前,有:假设条件几乎同前,有:其中其中 同同样样也也可可写写成成广广义义Hooke定定律律形形式式。由由于于上上式式和和粘粘性性流流体体的的牛牛顿顿公公式式相相似似,故故称称为为塑塑性性流流动动方方程程。Levy-Mises方方程程实实际际上上是是塑塑性性流流动动方方程程的的增增量量形形式式。若若不不考考虑虑应应变变速速度度对对材材料料性性能能的的影影响响,二二者者是是一致的。一致的。第25页/共43页3Prandtl-Reuss增量理论增量理论 在在Levy-Mises增增量量理理论论基基础础上上考考虑虑了了弹弹性性变变形形的的影影响响,得得出出了了Prandtl-Reuss增量理论,其中弹性部分同弹性广义增量理论,其中弹性部分同弹性广义Hooke定律。定律。式中式中G、E分别为弹性剪切模量和弹性模量。分别为弹性剪切模量和弹性模量。分析上式可知,若已知分析上式可知,若已知 和和 ,不论材料是理想还是,不论材料是理想还是强化的,强化的,均可以确定。反过来,若已知均可以确定。反过来,若已知 ,对理想材料,对理想材料而言,仍不能求出而言,仍不能求出 。对硬化材料而言,则可给出。对硬化材料而言,则可给出 。第26页/共43页全量理论(形变理论)全量理论(形变理论)若若已已知知应应变变变变化化历历史史,即即知知道道了了加加载载路路径径,则则沿沿这这个个路路径径可可以以积积分分得得出出应应力力与与应应变变全全量量之之间间的的关关系系,建建立立全全量量理理论论或或形形变变理理论论,尤尤其其是是在在简简单单加加载载条条件件下下,把把增增量量理理论中的增量符号论中的增量符号“d”取消即可。取消即可。用用Prandtl-Reuss增量理论的积分形式表达即为:增量理论的积分形式表达即为:上上式式称称为为Hencky全全量量理理论论方方程程,只只适适用用于于小小塑塑性性变变形形或简单加载的大塑性变形。或简单加载的大塑性变形。第27页/共43页全量理论(形变理论)全量理论(形变理论)在在简简单单加加载载条条件件不不成成立立的的情情况况下下全全量量理理论论照照理理是是不不能能使使用用的的。但但由由于于全全量量理理论论解解题题的的方方便便与与直直观观,在在简简单单加加载载条条件件不不成成立立的的情情况况下下,也也经经常常使使用用全全量量理理论论求求解解。最最令令人人奇奇怪怪的的是是象象板板材材的的塑塑性性失失稳稳问问题题,在在失失稳稳时时刻刻,应应力力分分量量之之间间的的比比例例变变化化激激烈烈,而而实实验验结结果果却却更更接接近近于于全全量量理理论论的的计计算算结结果果。这这就就使使人人们们估估计计全全量量理理论论的的适适应应范范围围比比简简单单加加载载宽宽得得多多,因因此此提提出出了了所所谓谓偏偏离离简简单单加加载载问问题题,探探讨讨应应力力路路径径可可以以偏偏离离简简单单加加载载路路径径多多远远而而仍仍能能应应用用全全量量理理论论的的问问题题。至至于于为为什什么么在在失失稳稳问问题题中中全全量量理理论论计计算算结结果果比比增增量量理理论论好好,目目前前仍仍未未得到很好的解释,还在继续研究之中。得到很好的解释,还在继续研究之中。第28页/共43页6.4 塑性势塑性势6.4.1 弹性应变能与弹性势弹性应变能与弹性势 第29页/共43页加载加载储能储能Ue卸载卸载释放释放Ue第30页/共43页6.4.2塑性势塑性势 1938年年Melon类比弹性势提出塑性势类比弹性势提出塑性势 塑性势概念:塑性势概念:g()塑性势函数塑性势函数 性质:数量函数性质:数量函数 物理意义:应该具有能量内涵物理意义:应该具有能量内涵第31页/共43页第32页/共43页第33页/共43页6.4.3塑性势的应用塑性势的应用例1:应用于各向异性材料的屈服准则与流动法则应用于各向异性材料的屈服准则与流动法则(本构关系本构关系)正交各向异性材料的正交各向异性材料的Hill屈服准则屈服准则,即是即是Mises屈服准则的推广屈服准则的推广第34页/共43页6个各向异性参数可以通过试验确定个各向异性参数可以通过试验确定即在即在6个不同方向取个不同方向取6组样品组样品,进行单拉试验进行单拉试验,可以得到可以得到6个方程;联合求解个方程;联合求解,这样就这样就可以求得可以求得6个各向异性参数。然后利用塑性势求解该材料的本构方程(应力个各向异性参数。然后利用塑性势求解该材料的本构方程(应力应变关系)及等效应力与等效应变。应变关系)及等效应力与等效应变。第35页/共43页设设:轧制方向为轧制方向为x方向方向,宽为宽为y方向方向,原向为原向为z方向方向 例例2:深冲板成形性能深冲板成形性能Al合金深冲板合金深冲板:1.制罐料制罐料 3004;2.汽车深冲汽车深冲.r-厚向异性系数厚向异性系数,塑性比塑性比冷轧薄板冷轧薄板:平面各向异性平面各向异性(R与与T各向异性各向异性)深冲时深冲时,材料处于平面应力状态材料处于平面应力状态第36页/共43页第37页/共43页第38页/共43页6.5 Drucker公设与最大塑性消耗原理公设与最大塑性消耗原理1951年年,Drucker提出了关于材料变形稳定性的判据提出了关于材料变形稳定性的判据例如例如:单向拉伸单向拉伸第39页/共43页Add0dd第40页/共43页有关推论有关推论:加载曲线是外凸的加载曲线是外凸的,与最大功耗原理等价的循环路径与最大功耗原理等价的循环路径.应力与应变增量主轴重合时才符合增量理论应力与应变增量主轴重合时才符合增量理论.Drucker将这种情况推广到一般应力状态将这种情况推广到一般应力状态:第41页/共43页思考思考:塑性塑性(plasticity)是材料的属性还是材料的状态是材料的属性还是材料的状态?材料在不同状态下表现出不同的力学行为材料在不同状态下表现出不同的力学行为(塑变方式塑变方式,大小大小),屈服条件的改变屈服条件的改变,引起引起塑性本构关系的改变;变形条件(如应力状态)的改变不仅会引起变形状态的塑性本构关系的改变;变形条件(如应力状态)的改变不仅会引起变形状态的改变,还将引起材料性能的变化。改变,还将引起材料性能的变化。塑性塑性是表征材料在不同条件下发生塑性变形是表征材料在不同条件下发生塑性变形(永久的不可恢复的变形永久的不可恢复的变形)而不开裂的能力而不开裂的能力,区别于区别于塑性变形塑性变形。参考参考:金属塑性成形原理金属塑性成形原理 王祖唐王祖唐 75/WZT类似的问题同样可以针对材料的超塑性、硬度、强度、刚度、韧性、热类似的问题同样可以针对材料的超塑性、硬度、强度、刚度、韧性、热膨胀系数、导电率等提出。膨胀系数、导电率等提出。第42页/共43页感谢观看!感谢观看!第43页/共43页