第五全国高中数学青教师观摩与评比活动古典概型海南潘峰.pptx
-
资源ID:87301782
资源大小:1.01MB
全文页数:22页
- 资源格式: PPTX
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
第五全国高中数学青教师观摩与评比活动古典概型海南潘峰.pptx
课堂训练课堂训练课堂小结课堂小结典型例题典型例题方法探究方法探究基本概念基本概念123456点点点点点点点点点点点点问题1:(1)(2)在一次试验中,会同时出现 与 这两个基本事件吗?“1点”“2点”事件“出现偶数点”包含哪几个基本事件?“2点”“4点”“6点”不会任何两个基本事件是互斥的任何两个基本事件是互斥的任何事件任何事件(除不可能事件除不可能事件)都可以表示成基本事件的和都可以表示成基本事件的和事件“出现的点数不大于4”包含哪几个基本事件?“1点”“2点”“3点”“4点”第1页/共22页一次一次试验可能出现的试验可能出现的每一个结果每一个结果 称为一个称为一个基本事件基本事件课堂训练课堂训练课堂小结课堂小结典型例题典型例题方法探究方法探究基本概念基本概念例例1 从字母从字母a、b、c、d任意取出两个不同字母的试任意取出两个不同字母的试验中,有哪些基本事件?验中,有哪些基本事件?解:解:所求的基本事件共有所求的基本事件共有6个:个:abcdbcdcd树状图树状图第2页/共22页123456点点点点点点课堂训练课堂训练课堂小结课堂小结典型例题典型例题方法探究方法探究基本概念基本概念(“1点点”)P(“2点点”)P(“3点点”)P(“4点点”)P(“5点点”)P(“6点点”)P反面向上反面向上正面向上正面向上(“正面向上正面向上”)P(“反面向上反面向上”)P问题2:以下每个基本事件出现的概率是多少?试验 1试验 2第3页/共22页课堂训练课堂训练课堂小结课堂小结典型例题典型例题方法探究方法探究基本概念基本概念六六个基本事件基本事件的的概率都是率都是 “1 1点点”、“2 2点点”“3 3点点”、“4 4点点”“5 5点点”、“6 6点点”“正面朝上正面朝上”“反面朝上反面朝上”基本事件基本事件试验2 2试验1 1基本事件出基本事件出现的可能性的可能性两个基本事件基本事件的的概率都是率都是 问题问题3 3:观察对比,找出试验观察对比,找出试验1 1和试验和试验2 2的的共同特点共同特点:(1)试验中所有可能出现的基本事件的个数只有有限个相等(2 2)每个基本事件出现的可能性有限性有限性等可能性等可能性第4页/共22页(1)试验中所有可能出现的基本事件的个数(2 2)每个基本事件出现的可能性相等只有有限个我们将具有这两个特点的概率模型称为古典概率模型古典概型简称:课堂训练课堂训练课堂小结课堂小结典型例题典型例题方法探究方法探究基本概念基本概念有限性有限性等可能性等可能性第5页/共22页问题问题4 4:向一个圆面内随机地投射一个点,如向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认果该点落在圆内任意一点都是等可能的,你认为这是古典概型吗?为什么?为这是古典概型吗?为什么?有限性有限性等可能性等可能性课堂训练课堂训练课堂小结课堂小结典型例题典型例题方法探究方法探究基本概念基本概念第6页/共22页问题问题5 5:某同学随机地向一靶心进行射击,这一试验某同学随机地向一靶心进行射击,这一试验的结果有:的结果有:“命中命中1010环环”、“命中命中9 9环环”、“命中命中8 8环环”、“命中命中7 7环环”、“命中命中6 6环环”、“命中命中5 5环环”和和“不中环不中环”。你认为这是古典概型吗?你认为这是古典概型吗?为什么?为什么?有限性有限性等可能性等可能性1099998888777766665555课堂训练课堂训练课堂小结课堂小结典型例题典型例题方法探究方法探究基本概念基本概念第7页/共22页问题问题6 6:你能举出几个生活中的古典概型你能举出几个生活中的古典概型的例子吗?的例子吗?课堂训练课堂训练课堂小结课堂小结典型例题典型例题方法探究方法探究基本概念基本概念第8页/共22页掷一颗均匀的骰子掷一颗均匀的骰子,试验试验2:问题问题7:在古典概率模型中,如何求随机事件出现的概率?为为“出现偶数点出现偶数点”,事件事件A请问事件请问事件 A的概率是多少?的概率是多少?探讨:探讨:事件事件A 包含包含 个基本事件:个基本事件:246点点点点点点3(A)P(“4点点”)P(“2点点”)P(“6点点”)P(A)P63方法探究方法探究课堂训练课堂训练课堂小结课堂小结典型例题典型例题基本概念基本概念基本事件总数为:61616163211点,2点,3点,4点,5点,6点第9页/共22页(A)PA A包含的基本事件的个数基本事件的总数基本事件的总数方法探究方法探究课堂训练课堂训练课堂小结课堂小结典型例题典型例题基本概念基本概念古典概型的概率计算公式:要判断所用概率模型要判断所用概率模型是不是古典概型(前提)是不是古典概型(前提)在使用古典概型的概率公式时,应该注意:在使用古典概型的概率公式时,应该注意:第10页/共22页同时抛掷两枚均匀的硬币,会出现几种结果?列举出来.出现的概率是多少?“一枚正面向上,一枚反面向上”例例2 2解:基本事件有:(,)正正(,)正反(,)反正(,)反反(“一正一反”)正正反正反反在遇到在遇到“抛硬币抛硬币”的问题时的问题时,要对硬币进行编号用于区分要对硬币进行编号用于区分典型例题典型例题课堂训练课堂训练课堂小结课堂小结方法探究方法探究基本概念基本概念第11页/共22页例例3 同时掷两个均匀的骰子,计算:同时掷两个均匀的骰子,计算:(1)一共有多少种不同的结果?)一共有多少种不同的结果?(2)其中向上的点数之和是)其中向上的点数之和是9的结果有多少种?的结果有多少种?(3)向上的点数之和是)向上的点数之和是9的概率是多少?的概率是多少?解:解:(1)掷一个骰子的结果有)掷一个骰子的结果有6种,我们把两个骰子标上记号种,我们把两个骰子标上记号1,2以便区分,它总共出现的情况如下表所示:以便区分,它总共出现的情况如下表所示:(6,6)(6,5)(6,4)(6,3)(6,2)(6,1)(5,6)(5,5)(5,4)(5,3)(5,2)(5,1)(4,6)(4,5)(4,4)(4,3)(4,2)(4,1)(3,6)(3,5)(3,4)(3,3)(3,2)(3,1)(2,6)(2,5)(2,4)(2,3)(2,2)(2,1)(1,6)(1,5)(1,4)(1,3)(1,2)(1,1)从表中可以看出同时掷两个骰子的结果共有从表中可以看出同时掷两个骰子的结果共有36种。种。6543216543211号骰子号骰子 2号骰子号骰子典型例题典型例题课堂训练课堂训练课堂小结课堂小结方法探究方法探究基本概念基本概念列表法列表法一般适一般适用于分用于分两步完两步完成的结成的结果的列果的列举。举。第12页/共22页(6,6)(6,5)(6,4)(6,3)(6,2)(6,1)(5,6)(5,5)(5,4)(5,3)(5,2)(5,1)(4,6)(4,5)(4,4)(4,3)(4,2)(4,1)(3,6)(3,5)(3,4)(3,3)(3,2)(3,1)(2,6)(2,5)(2,4)(2,3)(2,2)(2,1)(1,6)(1,5)(1,4)(1,3)(1,2)(1,1)(6,3)(5,4)(4,5)(3,6)6543216543211号骰子号骰子 2号骰子号骰子(2)在上面的结果中,向上的点数之和为)在上面的结果中,向上的点数之和为9的结果有的结果有4种,种,分别为:分别为:(3)由于所有)由于所有36种结果是等可能的,其中向上点数之种结果是等可能的,其中向上点数之和为和为9的结果(记为事件的结果(记为事件A)有)有4种,因此,种,因此,(3,6),(4,5),(5,4),(6,3)第13页/共22页典型例题典型例题课堂训练课堂训练课堂小结课堂小结方法探究方法探究基本概念基本概念为什么要把两个骰子标上记号?如果不标记号会出为什么要把两个骰子标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗?现什么情况?你能解释其中的原因吗?如果不标上记号,类似于(如果不标上记号,类似于(3,6)和()和(6,3)的结果将没有区)的结果将没有区别。这时,所有可能的结果将是:别。这时,所有可能的结果将是:(6,6)(6,5)(6,4)(6,3)(6,2)(6,1)(5,6)(5,5)(5,4)(5,3)(5,2)(5,1)(4,6)(4,5)(4,4)(4,3)(4,2)(4,1)(3,6)(3,5)(3,4)(3,3)(3,2)(3,1)(2,6)(2,5)(2,4)(2,3)(2,2)(2,1)(1,6)(1,5)(1,4)(1,3)(1,2)(1,1)6543216543211号骰子号骰子 2号骰子号骰子 (3,6)(4,5)第14页/共22页因此,在投掷因此,在投掷两个骰子的过两个骰子的过程中,我们必程中,我们必须对两个骰子须对两个骰子加以加以标号标号区分区分(3,6)(3,3)概率不相等概率相等吗?第15页/共22页课堂小结课堂小结典型例题典型例题课堂训练课堂训练方法探究方法探究2.2.从,这九个自然数中任选一个,所选中的数是的倍数的概率为基本概念基本概念3.3.一副扑克牌,去掉大王和小王,在剩下的52张牌中随意抽出一张牌,试求以下各个事件的概率:A:抽到一张QB:抽到一张“梅花”C:抽到一张红桃 K1.单选题是标准化考试中常用的题型,一般是从、四个选项中选择一个正确的答案。假设考生不会做,他随机地选择了一个答案,则他答对的概率为第16页/共22页1.单选题是标准化考试中常用的题型,一般是从、四个选项中选择一个正确的答案。假设考生不会做,他随机地选择了一个答案,则他答对的概率为如果该题是不定项选择题,假如考生也不会做,则他能够答对的概率为多少?探究:此时比单选题容易了,还是更难了?课堂小结课堂小结典型例题典型例题课堂训练课堂训练方法探究方法探究基本概念基本概念基本事件总共有几个?“答对”包含几个基本事件?4 4个:个:A,B,C,DA,B,C,D1 1个个第17页/共22页课堂小结课堂小结典型例题典型例题课堂训练课堂训练方法探究方法探究2.2.从,这九个自然数中任选一个,所选中的数是的倍数的概率为基本概念基本概念3 3.一副扑克牌,去掉大王和小王,在剩下的52张牌中随意抽出一张牌,试求以下各个事件的概率:A:抽到一张QB:抽到一张“梅花”C:抽到一张红桃 K思考题思考题同时抛掷三枚均匀的硬币,会出现几种结果?出现的概率是多少?“一枚正面向上,两枚反面向上”第18页/共22页课堂训练课堂训练典型例题典型例题方法探究方法探究基本概念基本概念列举法(列举法(树状图或列表树状图或列表),应做到不重不漏。),应做到不重不漏。(2)古典概型的定义和特点(3)古典概型计算任何事件A的概率计算公式(1)基本事件的两个特点:任何事件(除不可能事件)都可以任何事件(除不可能事件)都可以表示成基本事件的和。表示成基本事件的和。任何两个基本事件是互斥的;任何两个基本事件是互斥的;等可能性。等可能性。有限性;有限性;P(A)=1.知识点:2.思想方法:课堂小结课堂小结第19页/共22页(必做)课本(必做)课本130130页练习第页练习第1 1,2 2题题 课本课本134134页习题页习题3.2A3.2A组第组第4 4题题 (选做)课本(选做)课本134134页习题页习题B B组第组第1 1题题第20页/共22页海口一中海口一中 潘潘 峰峰第21页/共22页感谢您的观看!第22页/共22页