欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    313概率的基本性质(好)(1).ppt

    • 资源ID:87303567       资源大小:3.06MB        全文页数:24页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    313概率的基本性质(好)(1).ppt

    3.1.3 3.1.3 概率的基本性质概率的基本性质事件事件的关系的关系和运算和运算概率的概率的几个基几个基本性质本性质 比如在掷骰子这个试验中:比如在掷骰子这个试验中:“出现的点数小于出现的点数小于或等于或等于3”这个事件中包含了哪些结果呢?这个事件中包含了哪些结果呢?“出现的点数为出现的点数为1”“出现的点数为出现的点数为2”“出现的点数为出现的点数为3”这三个结果这三个结果一一.创设情境,引入新课创设情境,引入新课 上一节课我们学习了随机事件的概率,举了生上一节课我们学习了随机事件的概率,举了生活中与概率知识有关的许多实例。今天我们来研究活中与概率知识有关的许多实例。今天我们来研究概率的基本性质。在研究性质之前,我们先来研究概率的基本性质。在研究性质之前,我们先来研究一下事件之间有什么关系。一下事件之间有什么关系。你能写出在掷骰子的试验中出现的其它事件吗?你能写出在掷骰子的试验中出现的其它事件吗?C C1 1=出现出现1 1点点;C C2 2=出现出现2 2点点;C C3 3=出现出现3 3点点;C C4 4=出现出现4 4点点;C C5 5=出现出现5 5点点;C C6 6=出现出现6 6点点;1.1.上述事件中有必然事件或不可能事件吗?有的上述事件中有必然事件或不可能事件吗?有的 话,哪些是?话,哪些是?D D1 1=出现的点数不大于出现的点数不大于11;D D2 2=出现的点数大于出现的点数大于33;D D3 3=出现的点数小于出现的点数小于55;E=E=出现的点数小于出现的点数小于7;7;F=F=出现的点数大于出现的点数大于6;G=6;G=出现的点数为偶数出现的点数为偶数;H=H=出现的点数为奇数出现的点数为奇数;一一.创设情境,引入新课创设情境,引入新课2.2.若事件若事件C C1 1发生,则还有哪些事件也一定会发生?发生,则还有哪些事件也一定会发生?反过来可以吗?反过来可以吗?3.3.上述事件中,哪些事件发生会使得上述事件中,哪些事件发生会使得 K=K=出现出现1 1 点或点或5 5点点 也发生?也发生?6.6.在掷骰子实验中事件在掷骰子实验中事件G G和事件和事件H H是否一定有一个是否一定有一个 会发生?会发生?5.5.若只掷一次骰子,则事件若只掷一次骰子,则事件C C1 1和事件和事件C C2 2有可能同有可能同 时发生么?时发生么?4.4.上述事件中,哪些事件发生当且仅当事件上述事件中,哪些事件发生当且仅当事件D D2 2且事且事 件件D D3 3同时发生同时发生?(一)事件的关系和运算:(一)事件的关系和运算:B BA A如图:如图:例例.事件事件C C1 1=出现出现1 1点点 发生,则事件发生,则事件 H=H=出现的出现的点数为奇数点数为奇数 也一定会发生,所以也一定会发生,所以注:注:不可能事件记作不可能事件记作 ,任何事件都包括不可能事件。,任何事件都包括不可能事件。(1 1)包含关系)包含关系一般地,对于事件一般地,对于事件A A与事件与事件B B,如果事件,如果事件A A发生,则发生,则事件事件B B一定发生,这时称一定发生,这时称事件事件B B包含事件包含事件A A(或称(或称事事件件A A包含于事件包含于事件B B),记作记作二二.剖析概念,夯实基础剖析概念,夯实基础(2 2)相等关系)相等关系B B A A如图:如图:例例.事件事件C C1 1=出现出现1 1点点 发生,则事件发生,则事件D D1 1=出现的出现的点数不大于点数不大于11就一定会发生,反过来也一样,就一定会发生,反过来也一样,所以所以C C1 1=D=D1 1。一般地,对事件一般地,对事件A A与事件与事件B B,若,若 ,那,那么称么称事件事件A A与事件与事件B B相等相等,记作,记作A=B A=B。二二.剖析概念,夯实基础剖析概念,夯实基础(3 3)并事件(和事件)并事件(和事件)若某事件发生当且仅当事件若某事件发生当且仅当事件A A发生或事件发生或事件B B发生,发生,则称此事件为事件则称此事件为事件A A和事件和事件B B的的并事件并事件(或(或和事和事件件),记作),记作 。B B A A如图:如图:例例.若事件若事件K=K=出现出现1 1点或点或5 5点点 发生,则事件发生,则事件C C1 1=出现出现1 1点点 与事件与事件C C5 5=出现出现 5 5 点点 中至少有一个会中至少有一个会发生,则发生,则 二二.剖析概念,夯实基础剖析概念,夯实基础(4 4)交事件(积事件)交事件(积事件)若某事件发生当且仅当事件若某事件发生当且仅当事件A A发生且事件发生且事件B B发生,发生,则称此事件为事件则称此事件为事件A A和事件和事件B B的的交事件交事件(或(或积事积事件件)记作)记作 B B A A如图:如图:例例.若事件若事件 M=M=出现出现1 1点且点且5 5点点 发生,则事发生,则事件件C C1 1=出现出现1 1点点 与事件与事件C C5 5=出现出现5 5点点 同同时发生,则时发生,则 二二.剖析概念,夯实基础剖析概念,夯实基础(5 5)互斥事件)互斥事件若若 为不可能事件(为不可能事件(),那么称事件),那么称事件A A与事件与事件B B互斥互斥,其含义是:,其含义是:事件事件A A与事件与事件B B在任何一次试在任何一次试验中都不会同时发生验中都不会同时发生。AB如图:如图:例例.因为事件因为事件C C1 1=出现出现1 1点点 与事件与事件C C2 2=出现出现2 2点点 不可能同时发生,故这两个事件互斥。不可能同时发生,故这两个事件互斥。二二.剖析概念,夯实基础剖析概念,夯实基础(6 6)互为对立事件)互为对立事件若若 为不可能事件,为不可能事件,为必然事件,那么称事件为必然事件,那么称事件A A与事件与事件B B互为对立事件互为对立事件,其含义是:,其含义是:事件事件A A与事件与事件B B在任在任何一次试验中有且仅有一个发生何一次试验中有且仅有一个发生。A AB B如图:如图:例例.事件事件G=G=出现的点数为偶数出现的点数为偶数 与事件与事件H=H=出现的点数为奇数出现的点数为奇数 即为互为对立事件。即为互为对立事件。二二.剖析概念,夯实基础剖析概念,夯实基础互斥事件可以是两个或两个以上事件的关系互斥事件可以是两个或两个以上事件的关系,而对立事件只针对两个事件而言而对立事件只针对两个事件而言。从定义上看,两个互斥事件有可能都不发生,从定义上看,两个互斥事件有可能都不发生,也可能有一个发生,也就是不可能同时发生;也可能有一个发生,也就是不可能同时发生;而对立事件除了要求这两个事件不同时发生外,对立事件除了要求这两个事件不同时发生外,还要求这二者之间必须要有一个发生,还要求这二者之间必须要有一个发生,因此,对立事件是互斥事件对立事件是互斥事件,是互斥事件的特殊情况,但互斥事件不一定是对立事件但互斥事件不一定是对立事件。从集合角度看,几个事件彼此互斥,是指这几个从集合角度看,几个事件彼此互斥,是指这几个事件所包含的结果组成的集合的交集为空集;而事件事件所包含的结果组成的集合的交集为空集;而事件A的对立事件的对立事件A所包含的结果组成的集合是全集中由所包含的结果组成的集合是全集中由事件事件A所包含的结果组成的集合的补集。所包含的结果组成的集合的补集。(1)将一枚硬将一枚硬币币抛抛掷掷两次,事件两次,事件A:两次出:两次出现现正正 面,事件面,事件B:只有一次出:只有一次出现现正面正面(2)某人射某人射击击一次,事件一次,事件A:中靶,事件:中靶,事件 B:射中:射中9环环(3)某某人人射射击击一一次次,事事件件A:射射中中环环数数大大于于5,事件事件B:射中:射中环环数小于数小于5.(1),(3)为互斥事件为互斥事件三三.迁移运用,巩固提高迁移运用,巩固提高1、判断下列每对事件是否为互斥事件、判断下列每对事件是否为互斥事件(一)独立思考后回答(一)独立思考后回答2、某某小小组组有有3名名男男生生和和2名名女女生生,从从中中任任选选2名名同同学学参参加加演演讲讲比比赛赛判判断断下下列列每每对对事事件件是是不不是是互互斥斥事事件件,如如果果是是,再再判判别别它它们们是是不不是是对对立事件立事件(1)恰有一名男生与恰有恰有一名男生与恰有2名男生;名男生;(2)至少有至少有1名男生与全是男生;名男生与全是男生;(3)至少有至少有1名男生与全是女生;名男生与全是女生;(4)至少有至少有1名男生与至少有名男生与至少有1名女生名女生不互斥不互斥三三.迁移运用,巩固提高迁移运用,巩固提高互斥不对立互斥不对立不互斥不互斥互斥且对立互斥且对立1.1.概率概率P(A)的取值范围的取值范围(1)0P(A)1.(2 2)必然事件的概率是)必然事件的概率是1.(3 3)不可能事件的概率是)不可能事件的概率是0.(4 4)若)若A B,则则 P(A)P(B)(二)概率的基本性质(二)概率的基本性质二二.剖析概念,夯实基础剖析概念,夯实基础思考:思考:掷一枚骰子掷一枚骰子,事件事件C C1 1=出现出现1 1点点,事件,事件 C C3 3=出现出现3 3点点 则事件则事件C C1 1 C C3 3 发生的频率发生的频率 与事件与事件C C1 1和事件和事件C C3 3发生的频率之间有什发生的频率之间有什 么关系么关系?结论:结论:当事件当事件A A与事件与事件B B互斥时互斥时二二.剖析概念,夯实基础剖析概念,夯实基础2.2.概率的加法公式:概率的加法公式:如果如果事件事件A A与事件与事件B B互斥互斥,则,则P(A B)=P(A)+P(B)若若事件事件A,B为对立事件为对立事件,则则P(B)=1P(A)3.3.对立事件的概率公式对立事件的概率公式二二.剖析概念,夯实基础剖析概念,夯实基础6甲甲、乙乙两两人人下下象象棋棋,甲甲获获胜胜的的概概率率为为30%,两两人人下下成成和和棋棋的的概概率率为为50%,则则乙乙获获胜胜的的概概率率为为_,甲甲不不输输的的概概率率为为_80%20%三三.迁移运用,巩固提高迁移运用,巩固提高8.某射手射击一次射中,某射手射击一次射中,10环、环、9环、环、8环、环、7环的概率分别是环的概率分别是0.24、0.28、0.19、0.16,计算这名射手射击一次计算这名射手射击一次1)射中)射中10环或环或9环的概率;环的概率;2)至少射中)至少射中7环的概率环的概率.3)射中环数不足)射中环数不足8环的概率环的概率.三三.迁移运用,巩固提高迁移运用,巩固提高(二二)根据题意列清各事件后再求解,完成后根据题意列清各事件后再求解,完成后 自由发言自由发言.0.520.870.29三三.迁移运用,巩固提高迁移运用,巩固提高9、在一次数学考试中,小明的成绩在、在一次数学考试中,小明的成绩在90分分以上的概率是以上的概率是0.13,在,在8089分以内的概率分以内的概率是是0.55,在,在7079分以内的概率是分以内的概率是0.16,在,在6069分以内的概率是分以内的概率是0.12,求小明成绩在,求小明成绩在60分以上的概率和小明成绩不及格的概率分以上的概率和小明成绩不及格的概率解解析析分分别别记记小小明明成成绩绩在在90分分以以上上,在在8089分分,在在7079分分,在在6069分分,60分分以以下下(不不及及格格)为为事事件件A、B、C、D、E,显显然然它它们们彼彼此此互互斥斥,故故小小明明成成绩绩在在80分分以以上上的的概概率率为为P(A B)P(A)P(B)0.130.550.68.小小 明明 成成 绩绩 在在 60分分 以以 上上 的的 概概 率率 为为P(A B C D)P(A)P(B)P(C)P(D)0.130.550.160.120.96.小小 明明 成成 绩绩 不不 及及 格格 的的 概概 率率 为为 P(E)1P(A B C D)10.960.04.三三.迁移运用,巩固提高迁移运用,巩固提高10、一一盒盒中中装装有有各各色色球球12只只,其其中中5红红、4黑黑、2白白、1绿,从中取绿,从中取1球求:球求:(1)取出球的颜色是红或黑的概率;取出球的颜色是红或黑的概率;(2)取出球的颜色是红或黑或白的概率取出球的颜色是红或黑或白的概率三三.迁移运用,巩固提高迁移运用,巩固提高独立思考后,可以小组讨论,尝试用多种方法独立思考后,可以小组讨论,尝试用多种方法解题,理清思路,代表发言。解题,理清思路,代表发言。三三.迁移运用,巩固提高迁移运用,巩固提高1 1、事件的关系与运算,区分、事件的关系与运算,区分互斥事件与对立事件互斥事件与对立事件 事件事件 关系关系1.包含关系包含关系2.等价关系等价关系 事件事件 运算运算3.事件的并事件的并(或和或和)4.事件的交事件的交(或积或积)5.事件的互斥事件的互斥(或互不相容或互不相容)6.对立事件对立事件(逆事件逆事件)2.概率的基本性质:概率的基本性质:1)必然事件概率为)必然事件概率为1,不可能事件概率,不可能事件概率为为0,因此,因此0P(A)1;2)当事件当事件A与与B互斥时,满足加法公式:互斥时,满足加法公式:P(A B)=P(A)+P(B);3)若事件若事件A与与B为对立事件,为对立事件,则则A B为为必然事件,所以必然事件,所以P(A B)=P(A)+P(B)=1,于是有于是有P(A)=1-P(B);

    注意事项

    本文(313概率的基本性质(好)(1).ppt)为本站会员(hyn****60)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开