核反应堆工程核反应堆工程 (10).ppt
Nuclear Engineering ReactorIntroduction of Small Modular Reactors Overview1DefinitionandStrategyofSMRsCurrentStatusofSMRs23IntroductiontoSMRs4IncentivesandChallenges5FutureTendsnWhat are Small Modular Reactors(SMRs)n“Small”referstothereactorpowerrating.Whilenodefinitiverangeexists,apowerratingfromapproximately10to300MWehasgenerallybeenadoptedn“Modular”refers to the unit assembly of the nuclear steam supplysystem(NSSS)which,whencoupledtoapowerconversionsystemorprocessheatsupplysystem,deliversthedesiredenergyproduct1 Definition1 StrategynEarlyreactorsforcommercialproductionofelectricityweresmalltogainconstructionandoperatingexperiencetomovetolargerratingsnNow,small units are multipurpose provide electric power for remote,vulnerablemilitarysites;propulsionofsubmarines,shipsandaircraftnSingleormultiplemodulesreactorscouldreducedcapitalinvestmentsandcapitalinvestmentratesnThe further economic premise is that cost can be made sufficientlycomparabletothatofexistinglarge-sizedplantsbyemployingastrategyofeconomyofnumbers(manufactureofmultipleidenticalmodules)andsimplificationofdesignversusthetraditionaleconomyofscaleWhy SMRs 2 Current StatusnTheUS,Russia,SouthKorea,China,Japan,Argentina,andFranceallhaveconceptsunderdesignandcomponent/systemtestingisunderwayinseveralcases.ThemostadvancedsituationsareintheUS,RussianandChineseprograms.nSMRsbefore2018Land-basedwater-cooledSMRsHighTemperatureGasCooledSMRsFastNeutronSpectrumSMRsMoltenSaltSMRsOtherSMRs2 Current StatusDesignOutput MWeTypeCountry StatusDesignOutput MWeTypeCountry StatusWaterCooledSMRs(LandBased)FastNeutronSpectrumSMRsACP100100PWRChinaBasicDesign4S10LMFRJapanDetailedDesignCAP200150/200PWRChinaConceptualDesign LFR-AS-200200LMFRLuxembourgPreliminaryDesignSMART100PWRKoreaCertifiedDesignSVBR-100100LMFRRussianDetailedDesignVK-300250BWR RussianDetailedDesignMoltenSaltSMRsUK-SMR443PWRUKMatureConceptIMSR190MSRCanadaBasicDesignNuScale5012PWRUSAUnderDevelopmentThorCon250MSRInternationalConsortiumBasicDesignSMR-160160PWRUSAPreliminaryDesignFUJI200MSRJapanExperimentalPhaseHighTemperatureGasCooledSMRsLFTR250MSRUSAConceptualDesignHTR-PM210HTGRChinaUnderConstruction Mk1PB-FHR100MSRUSAPre-ConceptualDesignGTHTR300300HTGRJapanBasicDesignOtherSMRsGT-MHR285HTGR Russian PreliminaryDesigneVinci0.215HeatPipeUSAUnderDevelopmentMorethan55inIAEAbookletsOverview3IntroductiontoSMRsLightwater-cooled(PWR)Light-water-cooled(BWR)LeadcooledSodiumcooledGascooledHeavy-water-cooled3.23.13.43.33.53.6Moltensalt3.73.1 ACP100ACP100pTheACP100isanintegratedPWRdesigndevelopedbyChina.pBasedonexistingPWRtechnologyadaptingverifiedpassivesafetysystemstocopewiththeconsequencesofaccidentevents.ParametersValueElectricalcapacity125MWeThermalcapacity385MWtSteamgenerator16OTSGsConfigurationIntegralSystempressure(MPa)15PowerconversionIndirectRankineFuel(enrichment)UO2(200MWeThermalcapacity660MWtSteamgeneratorVerticalU-tubetypeSystempressure(MPa)15.5Fuel(enrichment)UO2(4.2%)Refuelingcycle24monthsDesignlife60years3.1 CAP200 CAP200canbeusedasasupplementtolargePWRsandisdesignedformultiple applications,such as nuclear cogeneration and replacement ofretiredfossilpowerplantsinurbanareasDesign PhilosophyTarget ApplicationCompared with large PWRs,CAP200 has several advantages such ashigher inherent safety,lower frequency of large radioactivity release,longertimewithoutoperatorintervention,smallerenvironmentalimpact,lowersiterestrictions,shorterconstructionperiodandsmallerfinancingscaleaswellaslowerfinancialrisk.3.1 CAP200 CAP200adoptspassivesafetysystemswhichtakeadvantageofnaturalforcessuchasnaturalcirculation,gravityandcompressedairtomakethesystems work,offering improvements for plant in simplicity,safety,O&M,availabilityandinvestmentprotection.No active components such as pumps,fans and other machinery areused.Afewsimplevalvesalignandautomaticallyactuatethepassivesafetysystems.Thepassivesafetysystemsaredesignedtomeetcriteriaofsinglefailure,independence,diversity,multiplicity.Safety Features3.1 NuScale design pCommercializeanSMRdesigndevelopedbyOregonStateUniversityandtheINLANuScaleplantcanbescaledtoaccommodateupto12modulesEachmoduleproduces50MWe(gross)NuScaleParametersValueElectricalcapacity50MWeThermalcapacity160MWtSteamgeneratorHelical(2)Configuration IntegralOutlettemperature 300 PowerconversionIndirectRankineFuel(enrichment)UO2(5%)Refuelingcycle24monthsDesignlife60years3.1 NuScale design ThesharedpoolistheultimateheatsinkforresidualheatremovalAfail-safeemergencycorecoolingsystemcanprovideanunlimitedpost-accidentgraceperiodwithnooperatoraction,noACorDCpower,andnomake-upwaterEachmodulehasanindependentskid-mountedturbine-generatorsetforpowerconversionandcancontinuetooperatewhileothermodulesarebeingrefueledThereactorpressurevesselisimmersedinabelow-gradepoolsharedbyallmodulesUnlimitedcopingtimeforcorecoolingwithoutACorDCpower,wateraddition,oroperatoraction Specific Design Features Safety designOverview3IntroductiontoSMRsLightwater-cooled(PWR)Light-water-cooled(BWR)LeadcooledSodiumcooledGascooledHeavy-water-cooled3.23.13.43.33.53.6Moltensalt3.7VK-300(NIKIET,RussianFederation)3.2 VK-300pInnovativepassiveBWRbasedonoperatingprototypeandwell-developedequipmentParametersValueElectricalcapacity250MWeThermalcapacity750MWtSteamgeneratorExternal(4)Coolant/moderatorLightwaterConfiguration Compact loopSystempressure(MPa)6.9Coreinlet/exittemperatures()190/285PowerconversionIndirectRankineFuel(enrichment)UO2pellet/hexahedronRefuelingcycle72monthsDesignlife60years3.2 VK-300DesignoftheVK-300isbasedontheprovenWWERtechnologiesandtakesovertheoperatingexperienceoftheVK-50.Aimingtoachieveimprovedeconomicsthroughsystemsimplification.Thereactor core is cooled by natural circulation of coolant during normaloperationandinemergencycondition.Design Philosophy Target ApplicationVK-300reactorfacilityisspeciallyorientedtotheeffectiveco-generationelectricityandheatfordistrictheatingandforseawaterdesalinationhavingexcellentcharacteristicsofsafetyandeconomics.3.2 VK-300nInacogenerationplantwithVK-300reactorsteamgoesdirectlyfromreactortoaturbine.nAfterpassingseveralstages,somesteamisextractedfromtheturbineandsenttotheprimarycircuitofthedistrictheatsupplyortotheseawaterdesalinationfacility.nHeatfromthesecondarycircuitofthedistrictheatfacilityissuppliedtoconsumers.Thecircuitpressuresarechosensoastoexcludepossibilityofradioactivitytransporttotheconsumercircuit.Nuclear Steam Supply System3.2 VK-300InnovativefeatureoftheVK-300projectistheapplicationofametallinedprimarycontainment(PC)ofreinforcedconcrete.ThePChelpstoprovidesafety assurance economically and reliably using structurally simple,passivesafetysystemsThe residual heat is passively removed from the reactor by steamcondenserslocatedinthePCaroundthereactorthatarenormallyfloodedwiththeprimarycircuitwaterAtthesametimethepowerunitdesignstipulatesthatthewholepowerunitwillbewithinaleak-tightenclosure(thesecondarycontainment).Safety Features3.2 VK-300The Emergency Cooldown Tanks contain the water inventory foremergencyreactorfloodingandcorecoolingduringsteamorwaterlineruptureswithinthePCS.DuringaLOCA,thesteam-airmixturegoesviadischargepipelinesfromthe containment to the ECTs where it is condensed.As a result,acirculationcircuitoftheECTreactorPCSECTisformedanditsfunctionensureslong-termpassivecoolingofthereactor.Emergency Core Cooling System Containment System (PCS)ThePCShelpstosolvethesafetyassuranceproblemeconomicallyandreliablyusing structurallysimplepassive safetysystems.The PCS israthersmall,withabout2000cubicmeters AHWR-300-LEU3.3 AHWR-300-LEUpDevelopedbytheBhaBhaAtomicResearchCenter(BARC)pHeavywaterforneutronmoderationpLightwaterastheprimarycoolantParametersValueElectricalcapacity304MWeThermalcapacity920MWtSteamgeneratorSteamdrumConfigurationPressuretubeOutlettemperature288CPowerconversionDirectRankineRefuelingcycleContinuousDesignlife100years3.3 AHWR-300-LEUThefuelbundlesarecontainedinverticalpressuretubechannels.TheUandPucontentinthemixed-oxidefuelismaintainedbelow5%.NaturalcirculationoftheprimarycoolantisusedwithadirectRankinecycleforpowerconversion.Thesteam/watermixturethatexitsthecoreiscirculatedtoanexternalsteamseparatordrumwherethesteamisdirectedtotheturbineandthewatercondensateisreturnedtothefeedwaterheader.Specific Design Features Target ApplicationAHWR-300-LEUwillbeusedinco-generationmodeandproduce2400m3/dayofpotablewaterbyextractingaportionofthesteamfromthelowpressureturbine.3.4 GT-MHR ParametersValueElectricalcapacity288MweThermalcapacity600MWtModeratorGraphitePrimarycoolantHeliumConfiguration Prismatic Systempressure(MPa)7.2Coreinlet/exittemperatures()490/850Power conversionDirect Brayton Fuel(enrichment)LEUorWPuRefuelingcycle25monthsDesignlife60yearsGT-MHROKBMAfrikantovnTheGasTurbineModularHeliumReactor(GT-MHR)couplesanHTGRwithaBraytonpowerconversioncycle3.4 GT-MHR Design Philosophy Theuseofthegas-turbinecycleapplicationintheprimarycircuitleadstoaminimumnumberofreactorplantsystemsandcomponents.TheGT-MHRsafetydesignobjectiveistoprovidethecapabilitytorejectcoredecayheatrelyingonlyonpassive(natural)meansofheattransferwithouttheuseofanyactivesafetysystems.Target ApplicationTheGT-MHRcanproduceelectricityathighefficiency(approximately48%).Asitiscapableofproducinghighcoolantoutlettemperatures,itcanalsoefficientlyproducehydrogenbyhightemperatureelectrolysisorthermochemicalwatersplitting.3.4 GT-MHR Reactor Core and Fuel CharacteristicsCoatedparticlefuelisused.ThousandsofcoatedparticlesandgraphitematrixmaterialaremadeintoafuelcompactwiththousandsofcompactsinsertedintothefuelchannelsoftheHexagonalPrismgraphiteblocksorfuelassemblies.The coated particles will contain almost all fission products withtemperaturesupto1600.ThestandardfuelcycleforthecommercialGTMHRutilizeslowenricheduranium(LEU)inaoncethroughmodeThe GT-MHR show good proliferation resistance characteristics.Itproduces less total plutonium and239Pu(materials of proliferationconcern)perunitofenergyproduced.3.4 GT-MHR Safety Features nThe design features,which determine the inherent safety and ensurethermal,neutronic,chemicalandstructuralstabilityofthereactorunit,arethefollowing:(1)Usingofheliumcoolant,heliumischemicallyinert,itdoesnotaffectedbyphasetransformations,doesnotdissociate,isnotactivatedand has good heat transfer properties,does not react with fuel,moderatorandstructuralmaterials.(2)Thetemperatureandpowerreactivitycoefficientsarenegativethatprovidesthereactorsafetyinanydesignandaccidentconditions.3.4 GT-MHR Safety Features(3)Core and reflector structural material is high-density reactorgraphite with substantial heat capacity and heat conductivity andsufficient mechanical strength that ensures core configurationpreservationunderanyaccident(4)Nuclearfuelintheformofcoatedfuelparticleswithmultilayerceramiccoatings,whichretainintegrityandeffectivelycontainfissionproductsunderhighfuelburnupandhightemperaturesHTR-PM3.4 HTR-PM Pebble-bed-typeHigh-temperature,Helium-cooledreactorParametersValueElectricalcapacity105MWeThermalcapacity250MWtSteamgeneratorHelicalModeratorGraphitePrimarycoolantHeliumOutlettemperature 750PowerconversionIndirectRankineFuel(enrichment)TRISO-coatedUO2(8.5%)ReactivitycontrolRods,absorberballsRefuelingcycleContinuousDesignlife40yearsThe3mdiameterby11mtallcoreregionrepresentsatallgraphitehoppercontaining420000randomlypackedsphericalfuelelements.Thegraphiteblockreflectorthatdefinesthecoreregioniscontainedwithina57mdiameterby25mtallsteelpressurevessel.Thefuelelementsmigratedownwardthroughthecoreasspheresaremovedfromthecentraldischargechannelinthebottomreflectorandoptionallyreinsertedatthetopofthecoreifmaximumburnuphasnotbeenachieved.Theheliumcoolantflowsupwardthroughthesidereflectorandthendownwardthroughthecoreregionbeforeflowingthroughacross-ducttothehelium/watersteamgeneratorcontainedinaseparatesteelpressurevessel.3.4 HTR-PM StructuralFeaturesOperatingCharacteristicOverview3IntroductiontoSMRsLightwater-cooled(PWR)Light-water-cooled(BWR)LeadcooledSodiumcooledGascooledHeavy-water-cooled3.23.13.43.33.53.6Moltensalt3.73.5 4S4SToshiba/WestinghouseParametersValueElectricalcapacity10MWe(50MWe)Thermalcapacity30MWt(135MWt)PrimarycoolantSodiumConfigurationPoolSystem pressure(MPa)Non-pressurizedFuel(enrichment)U-Zrmetal(20%)ReactivitycontrolReflector,rodRefuelingcycle30years(10years)Designlife30yearsp4SSuperSafeSmallandSimple,designedbyToshibapSodium-cooledpool-typefastreactorwithmetalfuel3.5 4SIntroductionThe4Sisnotabreederreactor.The 4S offers two outputs of 10 MWe and 50 Mwe.These energyoutputsareselectedfromthedemandanalyses.Target ApplicationnThe 4S is designed as distributed energy source for multi-purpose applications such as electricity supply to remote areas,mining sites.nThe plant can be configured to deliver hydrogen and oxygen using the process of high temperature electrolysis.This process can be performed without producing environmentally disadvantageous byproducts,such as carbon dioxide.3.5 4S Design Philosophy The4Sreactorisanintegralpooltypewithalltheprimarycomponentsinstalledinsidethereactorvessel(RV).The 4S design is optimized to achieve the improvement of publicacceptanceandsafety,minimizationoffuelcost,adequatefuelburn-upandreductionincoresize.Thereflectorsurroundingthecoregraduallymoves,compensatingfortheburnupreactivitylossoverthecorelifetime.Theplantelectricpowercanbecontrolledbythewatersteamsystem,whichmakesthereactorapplicableforaloadfollowoperationmode.3.5 4SDecay Heat Removal SystemThewater/steamsystemisavailablefornormalshutdownheatremoval.Twoindependentpassivesystemsareprovidedfordecayheatremoval:theReactor Vessel Auxiliary Cooling System(RVACS)and the intermediatereactorauxiliarycoolingsystem(IRACS)TheRVACSiscompletelypassiveandremovesdecayheatfromthesurfacesoftheguardvessel(GV)usingnaturalcirculationofair.TheRVACS isalwaysinoperation,evenwhenthereactoroperatesatratedpowerTheIRACSremovesdecayheatbyaircoolerwhichisarrangedinserieswiththesecondarysodiumloop.HeatisremovedbyforcedsodiumandaircirculationattheIRACSwhenelectricpowerisavailable.3.5 4S Engineered Safety System Approach and ConfigurationTherearetwoindependentsystemsforreactorshutdown.Theprimaryshutdownsystemprovidesforadropofseveralsectorsofthereflector,and the back-up shutdown system provides for insertion of theultimateshutdownrodfromafullyoutpositionatthecorecenter.Thereflectorsandtheshutdownrodarefallenbygravityonscram.BoththereflectorandshutdownrodareeachcapableofenoughnegativereactivitytoshutdownthereactorSVBR-1003.6 SVBR-100ParametersValueElectricalcapacity101MWeThermalcapacity280MWtPrimarycoolantLead-BismuthConfigurationPoolSystempressure(MPa)LowpressureCoreinlet/exittemperatures()340/485PowerconversionIndirectRankineFuel(enrichment)UO2/hex(19.3%)Refuelingcycle8yearsDesignlife60yearsp TheSVBR-100isamultipurposesmallmodularfastreactor,cooledbyleadbismuth(LBE)SVBR-100designisbasedonoperationalexperienceofLBEcooledreactorsforsubmarinepropulsionapplication.TheSVBRtechnology,isclaimedasaGenerationIVnuclearreactor.Design Philosophy Target Application-ModularNPPofsmall,mediumorlargepower;-Regionalnuclearheatingandelectricitygeneratingplantof200-60