欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    第7章平面弯曲内力精选文档.ppt

    • 资源ID:87330622       资源大小:3.52MB        全文页数:38页
    • 资源格式: PPT        下载积分:18金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要18金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    第7章平面弯曲内力精选文档.ppt

    第7章 平面弯曲内力本讲稿第一页,共三十八页7.17.1 平面弯曲的概念与实例 弯曲是工程实际中最常见的一种基本变形。弯曲是工程实际中最常见的一种基本变形。例如:火车轮轴受力后的变形;例如:火车轮轴受力后的变形;工厂车间里的行车受力后的变形;工厂车间里的行车受力后的变形;还有水泥梁、公路上的桥梁等受力后的变形。还有水泥梁、公路上的桥梁等受力后的变形。7.1.1 7.1.1 平面弯曲的概念与实例平面弯曲的概念与实例 弯曲:构件在通过其轴线的面内,受到力偶或垂直于轴线的横向外力的作用(受弯曲:构件在通过其轴线的面内,受到力偶或垂直于轴线的横向外力的作用(受力特点),杆的轴线由直线变为曲线(变形特点)。力特点),杆的轴线由直线变为曲线(变形特点)。本讲稿第二页,共三十八页 平平面面弯弯曲曲:如如果果梁梁有有一一个个或或几几个个纵纵向向对对称称面面(梁梁的的轴轴线线应应为为该该纵纵向向对对称称面面内内的的一一条条平平面面直直线线,且且该该纵纵向向对对称称面面与与各各横横截截面面的的交交线线也也是是各各横横截截面面的的对对称称轴轴),当当作作用用于于梁梁上上的的所所有有外外力力(包包括括横横向向外外力力、力力偶偶、支支座座反反力力等等)都都位位于于梁梁的的某某一一纵纵向向对对称称面面内内时时,使使得得梁梁的的轴轴线线由由直直线线变变为为在在纵纵向向对对称称面面内的一条平面曲线,这种弯曲变形就称为平面弯曲。内的一条平面曲线,这种弯曲变形就称为平面弯曲。梁:变形为弯曲变形或以弯曲变形为主的杆件,工程上习惯称之为梁:变形为弯曲变形或以弯曲变形为主的杆件,工程上习惯称之为梁梁。7.17.1 平面弯曲的概念与实例 本讲稿第三页,共三十八页 1.1.简支梁简支梁 梁的一端为活动铰梁的一端为活动铰支座,另一端为固定铰支座。支座,另一端为固定铰支座。2.2.外伸梁外伸梁 梁的一端或两端梁的一端或两端伸出支座之外的简支梁。伸出支座之外的简支梁。3.3.悬臂梁悬臂梁 梁的一端为固定端支梁的一端为固定端支座、另一端自由。座、另一端自由。根据支座对梁约束的不同特点(支座可简化为三种形式:活动铰支座、根据支座对梁约束的不同特点(支座可简化为三种形式:活动铰支座、固定铰支座、固定端支座),简单的梁有三种类型:固定铰支座、固定端支座),简单的梁有三种类型:一、梁的计算简图一、梁的计算简图 简化为一直杆并用梁的轴线来表示。简化为一直杆并用梁的轴线来表示。二、梁的分类二、梁的分类 7.1.2 7.1.2 梁的计算简图及分类梁的计算简图及分类 7.17.1 平面弯曲的概念与实例 本讲稿第四页,共三十八页 又如:为了减少悬臂梁的变形和提高其强度,在梁的自由端增设一活动铰支座后,又如:为了减少悬臂梁的变形和提高其强度,在梁的自由端增设一活动铰支座后,梁也就成了梁也就成了一次超静定梁一次超静定梁。例如:为了减少简支梁的变形和提高其强度,在梁的跨中增设一活动铰例如:为了减少简支梁的变形和提高其强度,在梁的跨中增设一活动铰支座后,梁就成了支座后,梁就成了一次超静定梁一次超静定梁。这三种梁承受载荷后的支座反力都可由静力平衡方程求得,故一般将它们统这三种梁承受载荷后的支座反力都可由静力平衡方程求得,故一般将它们统称为称为静定梁静定梁,如梁的支座反力的数目多于静力平衡方程的数目的梁,用静力,如梁的支座反力的数目多于静力平衡方程的数目的梁,用静力平衡方程无法求得全部支座反力,这类梁称为平衡方程无法求得全部支座反力,这类梁称为超静定梁超静定梁。7.17.1 平面弯曲的概念与实例 本讲稿第五页,共三十八页7.27.2 平面弯曲内力剪力与弯矩 7.2.1 7.2.1 截面法求内力截面法求内力 问题:梁在发生平面弯曲变形时,横截面上会产生何种内力素?在横截问题:梁在发生平面弯曲变形时,横截面上会产生何种内力素?在横截面上会有几种内力素同时存在?如何求出这些内力素?面上会有几种内力素同时存在?如何求出这些内力素?例:欲求图示简支梁任意截面例:欲求图示简支梁任意截面1-11-1上的内力。上的内力。1.1.截开:截开:在在1-11-1截面处将梁截分为左、右两部分,截面处将梁截分为左、右两部分,取左半部分为研究对象。取左半部分为研究对象。2.2.代替:代替:在左半段的在左半段的1-11-1截面处添画内力截面处添画内力 、,(由平衡解释由平衡解释)代替右半部分对其代替右半部分对其作用。作用。本讲稿第六页,共三十八页3.3.平衡:整个梁是平衡的,截开后的每一部分也应平衡。平衡:整个梁是平衡的,截开后的每一部分也应平衡。由由 得得 由由 得得 如取右半段为研究对象,同样可以求得截面如取右半段为研究对象,同样可以求得截面1-11-1上的内力上的内力 和和 ,但,但左、右半段求得的左、右半段求得的 及及 数值相等,方向(或转向)相反。数值相等,方向(或转向)相反。7.2.2 7.2.2 剪力和弯矩剪力和弯矩 :是横截面上切向分布内力分量的合力,因与截面:是横截面上切向分布内力分量的合力,因与截面1-11-1相切,故称相切,故称为截面为截面1-11-1的剪力。的剪力。:是横截面上法向分布内力分量的合力偶矩,因在纵向对称面内且:是横截面上法向分布内力分量的合力偶矩,因在纵向对称面内且与截面垂直,故称为截面与截面垂直,故称为截面1-11-1的弯矩。的弯矩。7.27.2 平面弯曲内力剪力与弯矩 本讲稿第七页,共三十八页 由于取左半段与取右半段所得剪力和弯矩的方向(或转向)相反,为使无论由于取左半段与取右半段所得剪力和弯矩的方向(或转向)相反,为使无论取左半段或取右半段所得剪力和弯矩的正负符号相同,必须对剪力和弯矩的正负取左半段或取右半段所得剪力和弯矩的正负符号相同,必须对剪力和弯矩的正负符号做适当规定。符号做适当规定。剪力的正负:剪力的正负:使微段梁产生左侧截面向上、右侧截面向下的剪力为正,反之为负。使微段梁产生左侧截面向上、右侧截面向下的剪力为正,反之为负。弯矩的正负:弯矩的正负:使微段梁产生上凹下凸弯曲变使微段梁产生上凹下凸弯曲变形的弯矩为正,反之为负。形的弯矩为正,反之为负。归纳剪力和弯矩的计算公式:归纳剪力和弯矩的计算公式:7.27.2 平面弯曲内力剪力与弯矩 本讲稿第八页,共三十八页(截面上的剪力等于截面一侧所有横向外力的代数和。)(截面上的剪力等于截面一侧所有横向外力的代数和。)(截面上的弯矩等于截面一侧所有外力对截面形心取力(截面上的弯矩等于截面一侧所有外力对截面形心取力矩的代数和。)矩的代数和。)公式中外力和外力矩的正负规定:公式中外力和外力矩的正负规定:剪力公式中外力的正负规定:截面左段梁上向上作用的横向外力或右段梁上向下剪力公式中外力的正负规定:截面左段梁上向上作用的横向外力或右段梁上向下作用的横向外力在该截面上产生的剪力为正,反之为负。以上可归纳为一个简单的口作用的横向外力在该截面上产生的剪力为正,反之为负。以上可归纳为一个简单的口诀诀“左上、右下为正左上、右下为正”。7.27.2 平面弯曲内力剪力与弯矩 本讲稿第九页,共三十八页 弯矩公式中外力矩的正负规定:截面左段梁上的横向外力(或外力偶)对截弯矩公式中外力矩的正负规定:截面左段梁上的横向外力(或外力偶)对截面形心的力矩为顺时针转向或右段梁上的横向外力(或外力偶)对截面形心的力面形心的力矩为顺时针转向或右段梁上的横向外力(或外力偶)对截面形心的力矩为逆时针转向时,在该截面上产生的弯矩为正,反之为负。以上也可归纳为一矩为逆时针转向时,在该截面上产生的弯矩为正,反之为负。以上也可归纳为一个简单的口诀个简单的口诀“左顺、右逆为正左顺、右逆为正”。例例7.1 7.1 简支梁如图所示。试求图中各指定截面的剪力和弯矩。简支梁如图所示。试求图中各指定截面的剪力和弯矩。解解 (1 1)求支反力)求支反力 设设 、方向向上。方向向上。由由 及及 (2 2)求指定截面的剪力和弯矩)求指定截面的剪力和弯矩 7.27.2 平面弯曲内力剪力与弯矩 可求得可求得kNFkNFBA1010=本讲稿第十页,共三十八页(由(由1-11-1截面左侧计算)截面左侧计算)7.27.2 平面弯曲内力剪力与弯矩(由(由1-11-1截面左侧计算)截面左侧计算)1011011kNmFMA=(由(由2-22-2截面左侧计算)截面左侧计算)212102kNFFFAS-=-=-=(由(由2-22-2截面左侧计算)截面左侧计算)100110012kNmFFMA=-=-=(由(由3-33-3截面右侧计算)截面右侧计算)2102423kNFqFBS-=-=-+=(由(由3-33-3截面截面右侧计算)右侧计算)821012442123kNmFqMMBe=+-=+-=(由(由4-44-4截面右侧计算)截面右侧计算)2102424kNFqFBS-=-=-+=(由(由4-44-4截面右侧计算)截面右侧计算)122101242124kNmFqMB=+-=+-=本讲稿第十一页,共三十八页 从从以以上上1-11-1、2-22-2截截面面的的剪剪力力值值可可以以看看出出,在在集集中中力力 作作用用处处的的两两侧侧截截面面的的剪剪力力值值将将发发生生突突变变,突突变变值值就就等等于于该该集集中中力力 的的大大小小;而而从从3-33-3、4-44-4截截面面的的弯弯矩矩值值可可以以看看出出,在在集集中中力力偶偶 作作用用处处的的两两侧侧截截面面的的弯弯矩矩值值将将发发生生突突变变,突突变变值就等于该集中力偶矩值就等于该集中力偶矩 的大小。的大小。7.27.2 平面弯曲内力剪力与弯矩 本讲稿第十二页,共三十八页7.3.1 7.3.1 剪力方程与弯矩方程剪力方程与弯矩方程 梁横截面上的剪力与弯矩是随着截面的位置而发生变化的,以横坐标梁横截面上的剪力与弯矩是随着截面的位置而发生变化的,以横坐标 表示横截面的位置,则其剪力和弯矩都可以表示为表示横截面的位置,则其剪力和弯矩都可以表示为 的函数。的函数。即:即:将其称为梁的剪力方程与弯矩方程。将其称为梁的剪力方程与弯矩方程。7.37.3 剪力图与弯矩图 列内力方程时应根据梁上载荷的分布情况分段进行,集中力(包括支座反力)、集中列内力方程时应根据梁上载荷的分布情况分段进行,集中力(包括支座反力)、集中力偶的作用点和分布载荷的起、止点均为分段点。力偶的作用点和分布载荷的起、止点均为分段点。7.3.2 7.3.2 剪力图与弯矩图剪力图与弯矩图 为了一目了然地表示出梁的各横截面上剪力与弯矩沿梁轴线的分布为了一目了然地表示出梁的各横截面上剪力与弯矩沿梁轴线的分布本讲稿第十三页,共三十八页情况,通常可以情况,通常可以 为横坐标,以各内力为纵坐标,绘出为横坐标,以各内力为纵坐标,绘出 和和 的函数图象,将其称为剪力图与弯矩图。的函数图象,将其称为剪力图与弯矩图。从剪力图与弯矩图上可以很方便地确定梁的最大剪力和最大弯矩,从而迅速从剪力图与弯矩图上可以很方便地确定梁的最大剪力和最大弯矩,从而迅速确定梁危险截面的位置。确定梁危险截面的位置。绘制剪力图与弯矩图的最基本方法是列剪力方程与弯矩方程绘制内力图。绘制剪力图与弯矩图的最基本方法是列剪力方程与弯矩方程绘制内力图。例例7.2 7.2 如图所示简支梁如图所示简支梁AB ,受向下均布载荷,受向下均布载荷 作用。试列出梁的剪作用。试列出梁的剪力方程与弯矩方程。并画出剪力图与弯矩图。力方程与弯矩方程。并画出剪力图与弯矩图。7.3 7.3 剪力图与弯矩图剪力图与弯矩图本讲稿第十四页,共三十八页7.3 7.3 剪力图与弯矩图剪力图与弯矩图解:解:1 1)求支反力)求支反力由对称关系,由对称关系,。2 2)列剪力方程和弯矩方程)列剪力方程和弯矩方程 (a)(b)3 3)绘制剪力图与弯矩图)绘制剪力图与弯矩图 本讲稿第十五页,共三十八页7.3 7.3 剪力图与弯矩图剪力图与弯矩图 由由 式(式(a a)可知剪力图为一条斜直线,斜率为)可知剪力图为一条斜直线,斜率为 ,向下倾斜(即左,向下倾斜(即左高右低)。高右低)。由式(由式(b b)可知弯矩图为一条开口向下的抛物)可知弯矩图为一条开口向下的抛物线。可采用三点绘图法绘制其弯矩图。线。可采用三点绘图法绘制其弯矩图。(1)(1)起点起点 (2)(2)终点终点 根据根据 时,时,;时,时,。即可绘出剪力图。即可绘出剪力图。(a)(b)本讲稿第十六页,共三十八页(3 3)极值点(抛物线的最高点或最低点)极值点(抛物线的最高点或最低点)令令 可得可得 (从而确定了极值截(从而确定了极值截 面的位置)面的位置)将将 代入弯矩计算公式得代入弯矩计算公式得 (此即抛物线顶点的纵坐标,即可绘出抛物线,也就是梁的弯矩图。(此即抛物线顶点的纵坐标,即可绘出抛物线,也就是梁的弯矩图。由剪力图与弯矩图可以很方便地看出:由剪力图与弯矩图可以很方便地看出:最大剪力发生在两端截面的内侧,其绝对值为最大剪力发生在两端截面的内侧,其绝对值为 ;最大弯矩发生在中截面,最大弯矩发生在中截面,。7.3 7.3 剪力图与弯矩图剪力图与弯矩图本讲稿第十七页,共三十八页 例例7.37.3 图图7.14a7.14a所示简支梁所示简支梁AB,在,在C点受集中力点受集中力F作用,试列出梁的剪力方作用,试列出梁的剪力方程和弯矩方程,并画出剪力图和弯矩图。程和弯矩方程,并画出剪力图和弯矩图。解解 1 1)求支反力)求支反力 由平衡方程得由平衡方程得 内力,即可得内力,即可得AC的剪力方程和弯矩方程:的剪力方程和弯矩方程:2 2)分段列剪力方程和弯矩方程)分段列剪力方程和弯矩方程 对对AC段,在段内取坐标为段,在段内取坐标为 的截面计算的截面计算 7.37.3 剪力图与弯矩图(a)(a)(b)(b)本讲稿第十八页,共三十八页 3 3)绘制剪力图和弯矩图)绘制剪力图和弯矩图7.3 7.3 剪力图与弯矩图剪力图与弯矩图 同理可得同理可得CB段的剪力方程和弯矩方程:段的剪力方程和弯矩方程:(d)(c)本讲稿第十九页,共三十八页 式(式(b b)表示在)表示在AC段内的弯矩图是一条向右上方倾斜的斜直线,段内的弯矩图是一条向右上方倾斜的斜直线,由由 决定。决定。而式(而式(d d)表示在)表示在BC段内的弯矩图是一条向右下方倾斜的斜直线,段内的弯矩图是一条向右下方倾斜的斜直线,由由 决定整个梁的弯矩决定整个梁的弯矩图在集中力图在集中力F作用处形成一折角。作用处形成一折角。由由 图和图和 图可知,当图可知,当 时,时,CB 段内任意截面上的剪力值为最段内任意截面上的剪力值为最大,大,;当当 时,时,AC 段内任意截面上的剪力值为最大,段内任意截面上的剪力值为最大,7.3 7.3 剪力图与弯矩图剪力图与弯矩图本讲稿第二十页,共三十八页 从从 图上可以看出,在集中力图上可以看出,在集中力F作用的作用的C 截面处,剪力值发生了突变,截面处,剪力值发生了突变,突变值就等于该集中力突变值就等于该集中力 的大小。的大小。例例7.4 7.4 图示简支梁图示简支梁AB ,在,在C 截面处受截面处受集中力偶集中力偶 作用。试列出梁的剪力方程和作用。试列出梁的剪力方程和弯矩方程,并画出剪力图和弯矩图。弯矩方程,并画出剪力图和弯矩图。解解 1 1)求支反力)求支反力 7.3 7.3 剪力图与弯矩图剪力图与弯矩图 。梁上的最大弯矩值发生在集中力。梁上的最大弯矩值发生在集中力F作用的作用的C 截面上,其值截面上,其值为:为:。本讲稿第二十一页,共三十八页同理,可得同理,可得CB 段的剪力方程和弯矩方程:段的剪力方程和弯矩方程:7.3 7.3 剪力图与弯矩图剪力图与弯矩图2 2)分段列剪力方程和弯矩方程)分段列剪力方程和弯矩方程 对对AC段,在段内取坐标为段,在段内取坐标为 的截面计算内力,即可得的截面计算内力,即可得AC的剪力方程的剪力方程和弯矩方程:和弯矩方程:本讲稿第二十二页,共三十八页 由式(由式(a a)和()和(c c),),图为一条平行于图为一条平行于 轴的水平线。由此可见,轴的水平线。由此可见,集中力偶对集中力偶对 图无影响,梁上任一截面的剪力均为最大值图无影响,梁上任一截面的剪力均为最大值 。由式(由式(b b)和()和(d d)可知,在)可知,在AC 和和CB 段内,弯矩图均为斜率为段内,弯矩图均为斜率为 的斜直线,相互平行,但在集中力偶的斜直线,相互平行,但在集中力偶 作用的作用的C 截面处,图发生突变,截面处,图发生突变,突变的绝对值等于集中力偶的大小。若突变的绝对值等于集中力偶的大小。若 ,则在,则在C 点的左侧截面上有点的左侧截面上有最大弯矩最大弯矩 ;若;若 ,则在,则在C 点的右侧截面上有最大弯点的右侧截面上有最大弯7.3 7.3 剪力图与弯矩图剪力图与弯矩图矩矩 。本讲稿第二十三页,共三十八页如何能比较简单、方便地绘制梁的剪力图与弯矩图呢?如何能比较简单、方便地绘制梁的剪力图与弯矩图呢?下面我们来看一下前面学习过的例下面我们来看一下前面学习过的例7.2 7.2,梁的剪力方程与弯矩方程分别为:,梁的剪力方程与弯矩方程分别为:7.47.4 弯矩、剪力和载荷集度间的关系 如果将弯矩方程和剪力方程分别对如果将弯矩方程和剪力方程分别对 求导数,求导的结果恰好是剪力求导数,求导的结果恰好是剪力方程和载荷集度(设方程和载荷集度(设q以向上时为正)。即:以向上时为正)。即:(7.37.3)本讲稿第二十四页,共三十八页7.4 7.4 弯矩、剪力和载荷集度间的关系弯矩、剪力和载荷集度间的关系 设图示简支梁设图示简支梁AB 上作用有任意载荷,作用于上作用有任意载荷,作用于 微段梁上的载荷集度可以认为是微段梁上的载荷集度可以认为是均布的。建立直角坐标系(一般以左端面的形心均布的。建立直角坐标系(一般以左端面的形心A 为坐标原点,规定分布载荷向上为坐标原点,规定分布载荷向上时为正。时为正。在这些力作用下,由于整个梁原本是平衡的,在这些力作用下,由于整个梁原本是平衡的,所以所以 微段梁也处于平衡状态。微段梁也处于平衡状态。取取 微段梁为研究对象,设其左侧截面上的剪微段梁为研究对象,设其左侧截面上的剪力与弯矩分别为力与弯矩分别为 和和 ;右侧截面上的剪力与弯;右侧截面上的剪力与弯矩分别为矩分别为 和和 。本讲稿第二十五页,共三十八页 由由 (a a)由由 (b b)由(由(a a)可得:)可得:(7.3a7.3a)由(由(b b)略去二阶微量)略去二阶微量 整理后可得:整理后可得:(7.3b7.3b)将(将(7.3b7.3b)代入()代入(7.3a7.3a)可得:)可得:(7.3c7.3c)综合以上三式,可写为:综合以上三式,可写为:式式(7.3a7.3a)表表示示:剪剪力力图图中中曲曲线线上上某某点点的的斜斜率率等等于于梁梁上上对对应应点点处处的的载载荷荷集集度度;式式(7.3b7.3b)表示:弯矩图中曲线上某点的斜率等于梁上对应截面上的剪力。)表示:弯矩图中曲线上某点的斜率等于梁上对应截面上的剪力。7.4 7.4 弯矩、剪力和载荷集度间的关系弯矩、剪力和载荷集度间的关系本讲稿第二十六页,共三十八页7.4 7.4 弯矩、剪力和载荷集度间的关系弯矩、剪力和载荷集度间的关系 式(式(7.3b7.3b)可改写为积分形式,即)可改写为积分形式,即 (7.4b7.4b)式(式(7.4b7.4b)表示:梁上)表示:梁上 截面上的弯矩等于截面上的弯矩等于 截面上的弯矩截面上的弯矩与对应与对应 截面之间剪力图曲线截面之间剪力图曲线与与 x 轴所围几何图形面积的代数和。轴所围几何图形面积的代数和。但要注意的一点是:当梁上有集中力作用时,该力作用的截面处式(但要注意的一点是:当梁上有集中力作用时,该力作用的截面处式(7.3a7.3a)不)不适用;而在梁上有集中力偶作用的截面处式(适用;而在梁上有集中力偶作用的截面处式(7.3b7.3b)和式)和式 (7.4b7.4b)不适用。)不适用。掌握了弯矩、剪力和载荷集度之间的关系,有助于正确、简捷地绘制剪力图与弯矩图。掌握了弯矩、剪力和载荷集度之间的关系,有助于正确、简捷地绘制剪力图与弯矩图。同时,也可使用其检查已绘制好的剪力图与弯矩图是否有错误。同时,也可使用其检查已绘制好的剪力图与弯矩图是否有错误。本讲稿第二十七页,共三十八页7.4 7.4 弯矩、剪力和载荷集度间的关系弯矩、剪力和载荷集度间的关系 根据式(根据式(7.37.3)和集中力、集中力偶作用的截面处内力图的变化规律,可)和集中力、集中力偶作用的截面处内力图的变化规律,可以将剪力图、弯矩图和梁上载荷三者之间的规律小结见表以将剪力图、弯矩图和梁上载荷三者之间的规律小结见表7.17.1。本讲稿第二十八页,共三十八页7.4 7.4 弯矩、剪力和载荷集度间的关系弯矩、剪力和载荷集度间的关系利用表利用表7.17.1所归纳的规律,只需要计算梁上某些特殊截面的内力值,就可以直接绘制出所归纳的规律,只需要计算梁上某些特殊截面的内力值,就可以直接绘制出剪力图与弯矩图,而不必列出弯矩方程和剪力方程,我们将这种绘制内力图的方法简剪力图与弯矩图,而不必列出弯矩方程和剪力方程,我们将这种绘制内力图的方法简称为称为“控制点作图法控制点作图法”。例例7.5 7.5 利利用用 之之间间的的关关系系,画出图示梁的内力图。画出图示梁的内力图。解解 1 1)求支反力)求支反力 以梁以梁AB 为研究对象为研究对象 由由 得得 本讲稿第二十九页,共三十八页7.4 7.4 弯矩、剪力和载荷集度间的关系弯矩、剪力和载荷集度间的关系由由 得得 2 2)利用)利用 之间的关系,画图示梁的内力计算各段起、止截面之间的关系,画图示梁的内力计算各段起、止截面的剪力值,画内力图。的剪力值,画内力图。a a)从各截面左边的横向外力计算各截面)从各截面左边的横向外力计算各截面剪力画剪力图。剪力画剪力图。本讲稿第三十页,共三十八页 对于右端面对于右端面B 的左侧面剪力,从右边计算显然很简捷。的左侧面剪力,从右边计算显然很简捷。注意:各剪力符号右上角的注意:各剪力符号右上角的 +、-号表示该截面的右截面或左截面。号表示该截面的右截面或左截面。由表由表7.17.1所归纳的作图规律可知:剪力图在所归纳的作图规律可知:剪力图在AC 段为向右下倾斜的直线,在段为向右下倾斜的直线,在CD、DB 段内为水平线。根据数据作图。段内为水平线。根据数据作图。b b)从各截面左边的外力(包括力偶)计算各截面弯矩,画弯矩图。)从各截面左边的外力(包括力偶)计算各截面弯矩,画弯矩图。7.4 7.4 弯矩、剪力和载荷集度间的关系弯矩、剪力和载荷集度间的关系本讲稿第三十一页,共三十八页7.4 7.4 弯矩、剪力和载荷集度间的关系弯矩、剪力和载荷集度间的关系 对于截面对于截面D及右端面及右端面B剪力,从右边计算显然很简捷。剪力,从右边计算显然很简捷。由表由表7.17.1所归纳的作图规律可知:弯矩图在所归纳的作图规律可知:弯矩图在AC 段内为上凸的抛物线,在段内为上凸的抛物线,在CD、DB 段内为向右下倾斜的直线。根据数据作图。段内为向右下倾斜的直线。根据数据作图。注意:关于注意:关于AC 段抛物线顶点的坐标确定段抛物线顶点的坐标确定:首先要确定位置坐标首先要确定位置坐标 ,其方法有两种:其方法有两种:本讲稿第三十二页,共三十八页 (2)(2)可由已绘制的剪力图中,用相似三角形的对应边成比例来求。可由已绘制的剪力图中,用相似三角形的对应边成比例来求。7.4 7.4 弯矩、剪力和载荷集度间的关系弯矩、剪力和载荷集度间的关系 求出了位置坐标求出了位置坐标 ,就可代入弯矩计算公式计算,就可代入弯矩计算公式计算抛物线顶点的纵坐标抛物线顶点的纵坐标(即弯矩的极值)(即弯矩的极值)。同样求得同样求得 。由由 m34=Ex (1)(1)据式(据式(7.3b7.3b)可知,函数一阶导数为零时,函数有可知,函数一阶导数为零时,函数有极值,剪力为零的截面上,弯矩有极值。我们可以设此截面横坐标极值,剪力为零的截面上,弯矩有极值。我们可以设此截面横坐标为为 ,由,由 求得求得 。m34=Ex本讲稿第三十三页,共三十八页7.4 7.4 弯矩、剪力和载荷集度间的关系弯矩、剪力和载荷集度间的关系 此外,绘制完剪力图后,也可根据剪力与弯矩间的导数关系,以及集中此外,绘制完剪力图后,也可根据剪力与弯矩间的导数关系,以及集中力偶作用处弯矩图有突变的特点,绘制弯矩图。力偶作用处弯矩图有突变的特点,绘制弯矩图。根据上面的数据同样可以绘制弯矩图,并可通过根据上面的数据同样可以绘制弯矩图,并可通过B、D 两截面的弯矩两截面的弯矩值进行校核:值进行校核:同理可得:同理可得:3,5,2kNmMkNmMkNmMDC+C-=67.2)34(421210kNmxFdsFMMEAEASAE=+=+=-=-+=+=BDSDBdsFMM0)13(3本讲稿第三十四页,共三十八页 由剪力图和弯矩图可以很方便地看出梁的最大剪力在由剪力图和弯矩图可以很方便地看出梁的最大剪力在A 支座稍右的支座稍右的A+截面上,截面上,最大弯矩在梁中截面,最大弯矩在梁中截面C的稍右的的稍右的C+截面截面上,上,。7.4 7.4 弯矩、剪力和载荷集度间的关系弯矩、剪力和载荷集度间的关系本讲稿第三十五页,共三十八页作业P138 7.1 a c 7.2 a c f 7.3b e f 7.5 b本讲稿第三十六页,共三十八页 1.1.梁在平面弯曲变形时横截面上有两种内力梁在平面弯曲变形时横截面上有两种内力剪力和弯矩。其计算公式为:剪力和弯矩。其计算公式为:(截面上的剪力等于截面一侧所有横向外力的代数和。)(截面上的剪力等于截面一侧所有横向外力的代数和。)(截面上的弯矩等于截面一侧所有外力对截面形心取力(截面上的弯矩等于截面一侧所有外力对截面形心取力矩的代数和。)矩的代数和。)公式中外力和外力矩的正负规定:公式中外力和外力矩的正负规定:剪力公式中外力的正负规定:剪力公式中外力的正负规定:“左上、右下为正左上、右下为正”。弯矩公式中外力矩的正负规定:弯矩公式中外力矩的正负规定:“左顺、右逆为正左顺、右逆为正”。第7章 平面弯曲内力 小结本讲稿第三十七页,共三十八页 2.2.剪力图和弯矩图是分析梁强度和刚度问题的重要基础,从剪力图和弯矩图上可以很剪力图和弯矩图是分析梁强度和刚度问题的重要基础,从剪力图和弯矩图上可以很方便地找出梁的危险截面。本章的主要要求就是要能够熟练、正确地画好剪力图和弯矩图。方便地找出梁的危险截面。本章的主要要求就是要能够熟练、正确地画好剪力图和弯矩图。3.3.画剪力图和弯矩图的基本方法是列方程画图,但太烦琐,要画剪力图和弯矩图的基本方法是列方程画图,但太烦琐,要求学生重点掌握根据弯矩、剪力和载荷集度间的关系所得到的表求学生重点掌握根据弯矩、剪力和载荷集度间的关系所得到的表7.17.1所所 归纳的规律,直接绘制图形,并进行校核,以保证图形的正确性。归纳的规律,直接绘制图形,并进行校核,以保证图形的正确性。第第7 7章章 平面弯曲内力平面弯曲内力 小结 本讲稿第三十八页,共三十八页

    注意事项

    本文(第7章平面弯曲内力精选文档.ppt)为本站会员(石***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开