第6讲向量的内积与正交化精选文档.ppt
第6讲向量的内积与正交化本讲稿第一页,共十三页第第6节节 向量的内积与正交化向量的内积与正交化一一 向量的内积、长度及向量间的夹角向量的内积、长度及向量间的夹角定义定义 内积是两个向量之间的一种运算,其结果是一个实数。内积也称作点积点积或点乘点乘,并记作 x y。由于向量又可看作矩阵,借用矩阵记号,向量(列矩阵)x,y 的内积又可写成 (x,y)=xT y。本讲稿第二页,共十三页内积具有下列性质(其中 x,y,z 为 n 维向量,k 为实数):(1)(x,y)=(y,x);(2)(kx,y)=k(x,y);(3)(x+y,z)=(x,z)+(y,z);(4)(x,x)0,当且仅当 x=0 时,(x,x)=0。内积还满足施瓦茨施瓦茨(Schwarz)不等式不等式本讲稿第三页,共十三页定义:定义向量 的长度长度(范数范数,模模)为向量的长度具有下述性质:(1)非负性:当 x0 时,|x|0;当 x=0 时,|x|=0;(2)齐次性:|k x|=|k|x|;(3)施瓦茨不等式:|(x,y)|x|y|;(4)三角不等式:|x+y|x|+|y|。本讲稿第四页,共十三页 在二、三维空间中有向量夹角的概念,在更高维的向量空间中,夹角并没有直观的含义。但由施瓦茨不等式,当 x0,y0时,有称该角度为非零向量x与y的夹角夹角。当(x,y)=0时,x与y的夹角为 ,此时称向量x与y正交正交,记为 。由于零向量与任意同维向量的内积为0,所以规定规定零向量与任零向量与任意同维向量正交。意同维向量正交。本讲稿第五页,共十三页二二 正交的向量组及向量组的正交化正交的向量组及向量组的正交化 若一组向量两两正交,且不含0向量,则称该向量组为正交向量组。定理定理:正交的向量组必线性无关。本讲稿第六页,共十三页例:例:本讲稿第七页,共十三页在 n维向量空间中可以找到 n 个两两正交的向量。这是因为1)对任意的 有非零解,从而任取一非零解作为 则 正交;2)又因方程组 亦有非零解,从而可确定与 正交的 ;3)如此下去进一步确定出 ,即得 n 个两两正交的非零向量组。本讲稿第八页,共十三页 若现已有线性无关的向量组 ,也可以构建一个与之等价的且两两正交的向量组:以上过程称为施密特施密特(Schimidt)正交化过程正交化过程。进一步,可将 单位化(规范化),对施密特正交化过程,应注意向量组 与向量组 等价,其中 t=1,r本讲稿第九页,共十三页例:例:本讲稿第十页,共十三页例:本讲稿第十一页,共十三页 可得:定理定理:方阵 A 为正交阵的充分必要条件是 A 的列(行)向量都是单位向量,且两两正交。三三 正交矩阵与正交变换正交矩阵与正交变换定义:如果 n 阶矩阵 A 满足 ATA=E则称 A 为正交矩阵正交矩阵,简称正交阵正交阵。对正交阵 A 按列自然分块,则有本讲稿第十二页,共十三页正交矩阵有如下性质:1)若 A 为正交矩阵,则|A|=1 或|A|=-1;2)A为正交矩阵,则 AT=A-1 也为正交矩阵;3)若A,B为同阶正交矩阵,则 AB 也为正交矩阵。定义:若 P 为正交矩阵,则线性变换 y=Px 称为正交变换。性质性质:正交变换保持线段长度不变。设 y=Px 为正交变换,则有由于任意两点的距离均不变,从而正交变换不改变图形的形状,这是正交变换的优良特性。本讲稿第十三页,共十三页