毕业答辩-基于HHT和模糊神经网络的滚动轴承故障诊断研究课件.ppt
-
资源ID:87394662
资源大小:1.45MB
全文页数:22页
- 资源格式: PPT
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
毕业答辩-基于HHT和模糊神经网络的滚动轴承故障诊断研究课件.ppt
基于HHTHHT和模糊神经网络的滚动轴承故障诊断研究专业:交通信息工程及控制专业:交通信息工程及控制序号:序号:目录一、一、概述概述二、二、论文的主要内容论文的主要内容三、三、结论和展望结论和展望概述 滚动轴承滚动轴承是大型旋转机械设备中的关键部件,其故是大型旋转机械设备中的关键部件,其故障发生率比较高,轴承故障会产生障发生率比较高,轴承故障会产生强烈的噪声,强烈的噪声,对操作对操作人员也十分有害。人员也十分有害。对滚动轴承进行故障诊断可以避免经济的损失,及对滚动轴承进行故障诊断可以避免经济的损失,及时解决设备的安全隐患,在机械故障诊断领域具有重要时解决设备的安全隐患,在机械故障诊断领域具有重要的意义。的意义。以瑞典以瑞典SKF公司的公司的6205-2RS JEM深沟深沟球轴承为研究对象球轴承为研究对象课题研究背景及意义论文的主要内容论文的主要内容滚动轴承故障诊断滚动轴承故障诊断直接利用小直接利用小波包降噪波包降噪采用采用EMD分解,利用分解,利用小波包降噪小波包降噪信噪比信噪比导入导入ANFIS进行训练和进行训练和测试测试导入导入BP神经神经网络进行训网络进行训练和测试练和测试收敛速度收敛速度误差精度误差精度EMD分解模态混叠分解模态混叠采用采用EMD的改进算的改进算法法EEMD,根据,根据白噪白噪声的概率分布特点,声的概率分布特点,再结合分布拟合检验再结合分布拟合检验选取有用选取有用IMF重构重构IMF分量,分量,利用包络谱进利用包络谱进行诊断行诊断复杂故障信号分析复杂故障信号分析论文技术路线论文技术路线论文的主要内容滚动轴承实验平台滚动轴承实验平台 本文所采用的数据来自于美国凯斯西储大学本文所采用的数据来自于美国凯斯西储大学轴承实验中心,上图为轴承实验平台,左边是电轴承实验中心,上图为轴承实验平台,左边是电动机,中间是扭矩换能器,右边是测力计。动机,中间是扭矩换能器,右边是测力计。论文的主要内容EMD-小波包去噪小波包去噪 对滚动轴承内圈故障信号进行对滚动轴承内圈故障信号进行EMD分解,得到分解,得到IMF分量及每一层分量对应的频谱图分量及每一层分量对应的频谱图论文的主要内容将去噪的将去噪的IMF1分量和其分量和其余余IMF分量重构得到降分量重构得到降噪结果噪结果对对IMF1分量进行小波分量进行小波包去噪包去噪论文的主要内容各种故障类型的各种故障类型的信噪比信噪比信噪比信噪比无故障无故障内圈故障内圈故障外圈故障外圈故障滚动体故障滚动体故障原始信号原始信号20.00763.16706.06462.2035小波包去噪小波包去噪28.824711.706512.864724.1126EMD-小波包小波包去噪去噪28.824416.826113.087426.4911论文的主要内容自适应神经模糊推理系统自适应神经模糊推理系统滚动轴承故障信号滚动轴承故障信号经经EMD-小波包进行小波包进行去噪预处理去噪预处理利用小波包进行特征利用小波包进行特征向量的构造向量的构造分为训练组和测试组分为训练组和测试组将其导入将其导入ANFIS和和BP神经网络进行训神经网络进行训练和测试练和测试论文的主要内容ANFIS的的训练误差曲线,训练误差曲线,训练至训练至5步基本收敛,误步基本收敛,误差精度为差精度为6.934710-5BP神经网络的神经网络的训练误差曲线,训练误差曲线,训练训练1000步才能将误差收敛步才能将误差收敛到到2.181110-5。虽然。虽然比比ANFIS的训练误差低一些,的训练误差低一些,但是这是在耗时长,训练步但是这是在耗时长,训练步数多的基础上实现的数多的基础上实现的。论文的主要内容采用采用ANFIS故障诊断法测试结果,在故障诊断法测试结果,在300个个测试样本中有测试样本中有299组正确,诊断正确率为组正确,诊断正确率为99.67%,BPBP神经网络的正确率仅为神经网络的正确率仅为90.67%。论文的主要内容内圈内圈滚动体滚动体外圈外圈论文的主要内容EEMD-分布拟合检验去噪法分布拟合检验去噪法EEMD结合结合分布拟合检分布拟合检验对轴承故验对轴承故障信号进行障信号进行去噪,提取去噪,提取有用的有用的IMF分量,去除分量,去除无意义无意义IMF分量,达到分量,达到降噪的目的降噪的目的论文的主要内容 EEMD-分布拟合检验算法流程图分布拟合检验算法流程图论文的主要内容内圈故障信号经过内圈故障信号经过EEMD的分解结果及的分解结果及正态概率图正态概率图服从正服从正态分布,态分布,作为无作为无用用IMF分量分量论文的主要内容 为了提高检验的可信度,本文又采取了为了提高检验的可信度,本文又采取了一种检验方式:一种检验方式:Jarque-Bera test。cic1c2c3c4c5c6c7H1110001 测试结果测试结果H=1说明拒绝为正态分布,作说明拒绝为正态分布,作为有用为有用IMF分量保留;分量保留;H=0说明接受为正态说明接受为正态分布,作为无用分布,作为无用IMF分量去除。分量去除。论文的主要内容重构后的内圈故障信号及其对应的包络谱重构后的内圈故障信号及其对应的包络谱利用包络谱对轴承进行故障诊断根据理论计算轴承根据理论计算轴承的的转频转频 HzHz,内圈故障频率内圈故障频率 Hz Hz,论文的主要内容外圈故障信号经过外圈故障信号经过EEMD的分解结果及的分解结果及正态概率图正态概率图服从正服从正态分布,态分布,作为无作为无用用IMF分量分量论文的主要内容 为了提高检验的可信度,本文又采取了为了提高检验的可信度,本文又采取了一种检验方式:一种检验方式:Jarque-Bera test。cic1c2c3c4c5c6c7H1001011 测试结果测试结果H=1说明拒绝为正态分布,作说明拒绝为正态分布,作为有用为有用IMF分量保留;分量保留;H=0说明接受为正态说明接受为正态分布,作为无用分布,作为无用IMF分量去除。分量去除。论文的主要内容重构后的外圈故障信号及其对应的包络谱重构后的外圈故障信号及其对应的包络谱利用包络谱对轴承进行故障诊断根据理论计算轴承根据理论计算轴承的的转频转频 HzHz,外圈故障频率外圈故障频率 Hz Hz,保,保持架的故障特征频持架的故障特征频率率 HzHz结论和展望(1)利用利用EMD结合小波包对滚动轴承进行降噪,结合小波包对滚动轴承进行降噪,结合了两种方法的优点,可以有效地提高信号结合了两种方法的优点,可以有效地提高信号 的信噪比。的信噪比。(2)ANFIS与与BP神经网络相比,训练时的收敛速度神经网络相比,训练时的收敛速度 更快,最终得到的诊断正确率更高。更快,最终得到的诊断正确率更高。(3)利用利用EEMD结合分布拟合检验可以很好地选择结合分布拟合检验可以很好地选择 出有用出有用IMF分量,提高了后期的诊断精度。分量,提高了后期的诊断精度。(4)降噪后的信号利用包络谱可以很明显地识别出降噪后的信号利用包络谱可以很明显地识别出 滚动轴承的各种故障特征频率,提高了诊断结滚动轴承的各种故障特征频率,提高了诊断结 果的正确性。果的正确性。结论结论和展望展望(1)研究中主要考研究中主要考虑滚动轴虑滚动轴承的承的单单一故障,一故障,进进一步研一步研究可以从复合多故障入手,利用究可以从复合多故障入手,利用EMD或或EEMD进进行多故障复合的故障行多故障复合的故障诊诊断。断。(2)研究中利用研究中利用EEMD对滚动轴对滚动轴承承进进行故障行故障诊诊断,断,采用的是分布采用的是分布拟拟合算法,合算法,进进一步研究可以利用一步研究可以利用 EEMD结结合智能算法合智能算法对滚动轴对滚动轴承承进进行故障行故障诊诊断。断。