自动控制原理 (2)幻灯片.ppt
自动控制原理第1页,共62页,编辑于2022年,星期二本章主要内容21控制系统微分方程的建立22传递函数 23控制系统的框图和传递函数 24非线性方程的线性化第2页,共62页,编辑于2022年,星期二预备知识基尔霍夫定律基尔霍夫定律1 1 基尔霍夫电流定律基尔霍夫电流定律2 2 基尔霍夫电压定律基尔霍夫电压定律第3页,共62页,编辑于2022年,星期二基尔霍夫定律概括了电路中电流和电压分别遵循的基尔霍夫定律概括了电路中电流和电压分别遵循的基本规律,是用以分析和计算电路的基本依据。基本规律,是用以分析和计算电路的基本依据。KCLKCL适用于电路中的任一适用于电路中的任一“节点节点”,KVLKVL适用于电路中的任一适用于电路中的任一“回路回路”。有关术语有关术语(1 1)支路支路:二端元件:二端元件(2 2)节点节点:元件的端点:元件的端点 (3 3)回路回路:电路中任一闭合路经:电路中任一闭合路经(4 4)网孔网孔:内部不含组成回路以外支路的回路:内部不含组成回路以外支路的回路(5 5)网络网络:含元件较多的电路:含元件较多的电路第4页,共62页,编辑于2022年,星期二1 1 基尔霍夫电流定律(基尔霍夫第一定律)基尔霍夫电流定律(基尔霍夫第一定律)KCLKCL 对于任一集中参数电路中的任一节点,在任一瞬间,对于任一集中参数电路中的任一节点,在任一瞬间,流出(或流入)该节点的所有支路电流的代数和等于流出(或流入)该节点的所有支路电流的代数和等于零。零。KCL反映了电路中会合到任一节点的各电流间反映了电路中会合到任一节点的各电流间相互约束关系。相互约束关系。第5页,共62页,编辑于2022年,星期二 对右图所示电路,取流出对右图所示电路,取流出节点的支路电流为正,流入节点的支路电流为正,流入为负(或取流入为正,流出为负(或取流入为正,流出为负)则有:为负)则有:节点节点 a -ia -i1 1+i+i2 2=0=0 节点节点 b -ib -i2 2+i+i3 3+i+i4 4=0=0 KCLKCL的实质是电流连续性原理在集中参数电路中的表现。所的实质是电流连续性原理在集中参数电路中的表现。所谓电流连续性:在任何一个无限小的时间间隔里,流入节点谓电流连续性:在任何一个无限小的时间间隔里,流入节点和流出节点的电流必然是相等的,或在节点上不可能有电荷和流出节点的电流必然是相等的,或在节点上不可能有电荷的积累,即每个节点上电荷守恒。的积累,即每个节点上电荷守恒。第6页,共62页,编辑于2022年,星期二 KCLKCL的重要性和普遍性还体现在该定律与电路中元件的重要性和普遍性还体现在该定律与电路中元件的性质无关,即不管电路中的元件是的性质无关,即不管电路中的元件是R R、L L、C C、M M、受、受控源、电源,也不管这些元件是线性、时变、定常、控源、电源,也不管这些元件是线性、时变、定常、KCLKCL的也适用于广义节点,即的也适用于广义节点,即适合于一个闭合面。右图所示适合于一个闭合面。右图所示电路,根据电路,根据KCLKCL设流入节点的设流入节点的电流为负,则:电流为负,则:-i-i1 1-i-i2 2-i-i3 3=0=0 第7页,共62页,编辑于2022年,星期二2 2 基尔霍夫电压定律(基尔霍夫第二定律)基尔霍夫电压定律(基尔霍夫第二定律)KVL 对于任一集中参数电路中的任一回路,在任一瞬间,对于任一集中参数电路中的任一回路,在任一瞬间,沿该回路的所有支路电压的代数和等于零。沿该回路的所有支路电压的代数和等于零。KVL反映了回路中各支路电压间的相互约束关系。反映了回路中各支路电压间的相互约束关系。第8页,共62页,编辑于2022年,星期二对右图所示电路,取支路电压对右图所示电路,取支路电压方方向与回路方向一致时为正,方方向与回路方向一致时为正,否则为负,则有否则为负,则有 回路回路 v4-v5+v6=0 回路回路 -v1+v5-v4-v3=0KVL实质上是能量守恒定律在集中参数电路中实质上是能量守恒定律在集中参数电路中的反映。单位正电荷在电场作用下,由任一点的反映。单位正电荷在电场作用下,由任一点出发,沿任意路经绕行一周又回到原出发点,出发,沿任意路经绕行一周又回到原出发点,它获得的能量(即电位升)必然等于在同一过它获得的能量(即电位升)必然等于在同一过程中所失去的能量(即电位降)。程中所失去的能量(即电位降)。第9页,共62页,编辑于2022年,星期二KVL的重要性和普遍性也体现在该定律与回的重要性和普遍性也体现在该定律与回路中元件的性质无关。路中元件的性质无关。KCL、KVL只对电路中各元件相互连接只对电路中各元件相互连接时,提出了结构约束条件。因此,对电路时,提出了结构约束条件。因此,对电路只要画出线图即可得方程。只要画出线图即可得方程。例:例:右图所示电路中右图所示电路中Ec=12V,Rc=5k,Re=1k,Ic=1mA,Ib=0.02mA,求:求:Vce及及c点、点、e点的电位。点的电位。解:解:KCL:Ie=Ib+Ic=0.02+1=1.02mA KVL:RcIc+Vce+ReIe-Ec=0Vce=5.98Vc=Ec-RcIc=7V(或c=vce+e=7V),e=ReIe=1.02V第10页,共62页,编辑于2022年,星期二1控制系统微分方程的建立第11页,共62页,编辑于2022年,星期二物理系统的数学模型物理系统的数学模型1 12 2 机械系统机械系统 电气系统电气系统 相似系统相似系统数数学学模模型型的的定定义义建建立立数数学学模模型型的的基基础础ExampleExample第12页,共62页,编辑于2022年,星期二 1 1 物理系统的数学模型物理系统的数学模型1 12 23 3 机械系统机械系统 电气系统电气系统 相似系统相似系统数数学学模模型型的的定定义义建建立立数数学学模模型型的的基基础础提提取取数数学学模模型型的的步步骤骤ExampleExample第13页,共62页,编辑于2022年,星期二1 1 数学模型的定义数学模型的定义系系系系统统统统示示示示意意意意图图图图系系系系统统统统框框框框图图图图恒温箱自动控制系统恒温箱自动控制系统第14页,共62页,编辑于2022年,星期二1 1 数学模型的定义数学模型的定义系系统统框框图图 t t u u2 2 u u u ua a n n v v u u t t 由若干个元件相互配合起来就构成一个完整的控制系统。系统是否能正常地工作,取决各个物理量之间相互作用与相互制约的关系。物理量的变换,物理量之间的相互关系信号传递体现为能量传递(放大、转化、储存)由动态到最后的平衡状态-稳定运动第15页,共62页,编辑于2022年,星期二1 1 数学模型的定义数学模型的定义数学模型:数学模型:描述系统变量间相互关系的动态性能动态性能的运动方程运动方程解析法解析法 依据系统及元件各变量之间所遵循的物理或化学规律列写出相应的数学关系式,建立模型。实验法实验法 人为地对系统施加某种测试信号,记录其输出响应,并用适当的数学模型进行逼近。这种方法也称为系统辨识。系统辨识。系统辨识。系统辨识。建立数学模型的方法:第16页,共62页,编辑于2022年,星期二数学模型的形式数学模型的形式时间域:时间域:微分方程差分方程状态空间模型冲激响应函数模型频率域:频率域:传递函数模型频率响应函数模型第17页,共62页,编辑于2022年,星期二数学模型的准确性和简化2 2 建立数学模型的基础建立数学模型的基础机械运动:机械运动:牛顿定理、能量守恒定理牛顿定理、能量守恒定理电学:电学:欧姆定理、基尔霍夫定律欧姆定理、基尔霍夫定律热学:热学:传热定理、热平衡定律传热定理、热平衡定律 微分方程微分方程 (连续系统)(连续系统)差分方程差分方程 (离散系统)(离散系统)线性与非线性分布性与集中性参数时变性第18页,共62页,编辑于2022年,星期二电气系统三元件电气系统三元件电阻电阻电容电容电感电感电学:欧姆定理、基尔霍夫定律。第19页,共62页,编辑于2022年,星期二3 3 提取数学模型的步骤提取数学模型的步骤划分环节写出每或一环节(元件)运动方程式消去中间变量写成标准形式注:列写微分方程的关键要了解元件或系统所属学科领域的有关规律,而不是数学本身实例实例二级二级RCRC无源网络无源网络第20页,共62页,编辑于2022年,星期二负载效应根据元件的工作原理和在系统中的作用,确定元件的输入量和输出量(必要时还要考虑扰动量),并根据需要引进一些中间变量。由运动方程式 (一个或几个元件的独立运动方程)划分环节划分环节 按功能(测量、放大、执行)第21页,共62页,编辑于2022年,星期二写出每或一环节写出每或一环节(元件元件)运动方程式运动方程式找出联系输出量与输入量的内部关系,并确定反映这种内在联系的物理规律。数学上的简化处理,(如非线性函数的线性化,考虑忽略一些次要因素)。第22页,共62页,编辑于2022年,星期二写成标准形式写成标准形式例如微分方程中,将与输入量有关的各项写在方程的右边;与输出量有关的各项写在方程的左边。方程两边各导数项均按降幂排列。第23页,共62页,编辑于2022年,星期二Li(t)Uo(t)Ui(t)RC第24页,共62页,编辑于2022年,星期二Li(t)Uo(t)Ui(t)RC第25页,共62页,编辑于2022年,星期二ymm0第26页,共62页,编辑于2022年,星期二第27页,共62页,编辑于2022年,星期二第28页,共62页,编辑于2022年,星期二第29页,共62页,编辑于2022年,星期二第30页,共62页,编辑于2022年,星期二2非线性运动方程的线性化将非线性微分方程在一定的条件下转化为线性微分方程的方法,称非线性微分方程的线性化。小偏差线性化:非线性微分方程能进行线性化的一个基本假设上是变量偏离其预期工作点的偏差甚小,这种线性化通常称为小偏差线性化。第31页,共62页,编辑于2022年,星期二第32页,共62页,编辑于2022年,星期二几何意义:以过平衡点(工作点)的切线代替工作点附近的曲线。说明:A.线性化时各自变量在工作点处必须有各阶导数或偏导数存在,如图所示的继电器特性,的各界导数处处不存在,本质非线性;B.必须明确工作点的参数;C.如果非线性运动方程较接近线性时,则线性化运动方程对于变量的增量在较大范围适用,反之,只能适用于变量的微小变化。第33页,共62页,编辑于2022年,星期二3传递函数与方块图传递函数与方块图.定义定义传递函数传递函数:初始条件为初始条件为 零时,线性定常系统或元件零时,线性定常系统或元件输出信号的拉氏变换与输入输出信号的拉氏变换与输入 信号的拉氏变换的比,信号的拉氏变换的比,称为该系统或元件的传递函数。称为该系统或元件的传递函数。第34页,共62页,编辑于2022年,星期二第35页,共62页,编辑于2022年,星期二二传递函数的性质传递函数的性质1.线性定常系统或元件的运动方程与传递线性定常系统或元件的运动方程与传递函数一一对应,它们是在不同域对同一系函数一一对应,它们是在不同域对同一系统或元件的描述。统或元件的描述。2.传递函数是表征线性定常系统或元件自传递函数是表征线性定常系统或元件自身的固有特性,它与其输入信号的形式无身的固有特性,它与其输入信号的形式无关关,但和输入信号的作用位置及输出信,但和输入信号的作用位置及输出信号的取出位置有关。号的取出位置有关。第36页,共62页,编辑于2022年,星期二3.传递函数是复变量S的有理分式,且分子、分母多项式的各项系数均为实数,分母多项式的次数N大于等于分子多项式的次数M,。4.传递函数写成的形式,则和为G(S)的零点和极点。5.物理结构不同的系统可以有相同的传递函数。第37页,共62页,编辑于2022年,星期二G(S)X1(S)X2(S)X(S)X(S)X(S)三.方块图1.定义:每个环节的功能和信号流向的图解表示;(3).分支点:信号分出的一点,称为分支点,通过分支点的信号都是相同的;(4).方框:对信号进行的数学变换;2.常用符号及术语E(S)X1(S)X2(S)(2).相加点(比较点)(1).信号线:带箭头的直线,箭头表示信号方向;第38页,共62页,编辑于2022年,星期二G1(S)G2(S)X1(S)X3(S)X2(S)G1(S)G2(S)+X3(S)X1(S)X2(S)X4(S)G2(S)G1(S)+Y(S)X1(S)E(S)X2(S)(5).方框图的串联、并联、反馈连接。第39页,共62页,编辑于2022年,星期二G1(S)G2(S)X1(S)X3(S)X2(S)3方框图的运算(1)串联连接的传递函数结论:二环节串联传递函数等于二传函之积。推广:N环节串联,传递函数等于N个环节传函之积。第40页,共62页,编辑于2022年,星期二G1(S)G2(S)+X3(S)X1(S)X2(S)X4(S)(2)并联连接的传递函数结论:二环节并联,其等效传函等于二环节传 函之和。推广:N环节并联,其等效传函等于各环节传 函之和。第41页,共62页,编辑于2022年,星期二G2(S)G1(S)+Y(S)X1(S)E(S)X2(S)(3)反馈回路传递函数的求取前向通道:由偏差信号至输出信号的通道;反馈通道:由输出信号至反馈信号的通道。第42页,共62页,编辑于2022年,星期二当为正反馈时结论:第43页,共62页,编辑于2022年,星期二G1(S)G2(S)G3(S)G4(S)G1(S)G2(S)G3(S)G4(S)第44页,共62页,编辑于2022年,星期二4 控制系统的传递函数控制系统的传递函数G1(S)G2(S)H(S)R(S)X1(S)X2(S)Y(S)-C(S)e(S)F(S)第45页,共62页,编辑于2022年,星期二(1)若则定义:C(S)/R(S)为被控信号对于控制信号的闭环传函,记为,即开环传函:前向通道与反馈通道传递函数之积 称为开环传函,记为G(S)。单位反馈:若H(S)=1,则系统称为单位反馈系统。第46页,共62页,编辑于2022年,星期二(2)若定义:C(S)/F(S)为被控信号对于扰动信号的闭环传函,记为。(3)令称为误差传函第47页,共62页,编辑于2022年,星期二5控制系统方框图及其简化控制系统方框图:应用函数方框把控制系统的全部变量联系起来以描述信号在系统中流通过程的图示。一.方框图的绘制步骤:1.写出组成系统的各环节的运动方程(传递函数);2.根据传递函数画出相应的函数方框;3.按信号流向将函数方框一一连接起来。第48页,共62页,编辑于2022年,星期二式有式有由由(1)(4)(CS1(S)IR c1 (3)I(S)R(S)U (2)(S)U(S)RI(S)U (1)(S)I(S)II(S)2111122020011i0112121SIiRdtiiRuuRiuiiii=+=+=+=+=Cii1i2R1R2UiU0I2(S)I1(S)I(S)+第49页,共62页,编辑于2022年,星期二R1CSI1(S)I2(S)R2I(S)U0(S)U0(S)UI(S)I1(S)1/R+-Ui(S)U0(S)I1(S)I2(S)I(S)+-U0(S)1/RR2CSR1+第50页,共62页,编辑于2022年,星期二二.方框图的简化G(S)G(S)X1X2X2X2X1X2G(S)G(S)X2X1X1(1)分支点前移分支点等效移动规则分支点前移,在移动支路中串入所越过的传递函数方框。(2)分支点后移分支点后移,在移动支路中串入所越过传递函数的倒数的方框。G(S)1/G(S)X1X2X1第51页,共62页,编辑于2022年,星期二G(S)1/G(S)X1X2X3-G(S)X1X2X3-x2x3x1G(s)G(s)G(s)x1x2x3(1)相加点前移2相加点等效移动规则相加点前移,在移动支路中串入所越过的传递函数的倒数方框(2)相加点后移相加点后移,在移动支路中串入所越过的传递函数方框。第52页,共62页,编辑于2022年,星期二G1G2G3G4G5G7G6-BA(1)前向通道中各串联函数方框的传函乘积保持不变;(2)各反馈回路所含函数方框的传函之积保持不变。3.方框图的简化原则第53页,共62页,编辑于2022年,星期二G1G2G3G4G4G5G7G6-第54页,共62页,编辑于2022年,星期二6信号流图x1x4x3x2abc1节点:用以表示变量或信号的点称为节点,用“o”表示。传输:两节点间的增益或传递函数称为传输。支路:连接两节点并标有信号流向的定向线段支路的增益即为传输。源点:只有输出支路而无输入支路的节点(与系统的输入信号相对应)。一.信号流图的常用术语:第55页,共62页,编辑于2022年,星期二阱点:只有输入支路而无输出支路的节点称为阱点或输出节点,与输出信号相对应。混合节点:既有输入支路又有输出支路的节点。通路:沿支路箭头所指方向穿过各相连支路的通径。开通路:如通路与任意节点相交不多于一次,称为开通路。闭通路:如果通路的终点就是通路的起点,而与任何其它 节点相交次数不多于一次,则称为闭通路或回路。回路增益:回路中各支路传输的乘积。不接触回路:回路间没有任何共有节点,则称其为不接触回路。前向通路:从源点到阱点的通路上,通过任何节点不多于一次,称为前向通路,前向通路中各支路传输的乘积,称为前向通路增益。第56页,共62页,编辑于2022年,星期二二.信号流图的基本性质x1x4x3x2abc11以节点代表变量,源点代表输入量,阱点代表输出量,用混合节点代表变量或信号的汇合。在混合节点处,出支路的信号等于各支路信号的叠加。2以支路表示变量或信号的传输和变换过程,信号只能沿着支路的箭头方向传输。在信号流图中每经过一条支路,相当于在方框图中经过一个用方框表示的环节。3增加一个具有单位传输的支路,可以把混合节点化为阱点。4对于同一系统,信号流图的形式不是唯一的。信号流图和方框图是一一对应的,且可以互相转化。第57页,共62页,编辑于2022年,星期二三.信号流图的简化X1X2X3X4a1a2a3X1X2X4a1a3a2a4abX1X2X1X2(1)串联支路的总传输等于各支路传输之积;(2)并联支路的总传输等于各支路传输之和;(3)混合节点可以通过移动支路的方法消去;(4)回路可以根据反馈连接的规则化为等效支路。第58页,共62页,编辑于2022年,星期二四.梅森增益公式第59页,共62页,编辑于2022年,星期二R(S)11G1-G7-G6-G5G3G2C(S)G4第60页,共62页,编辑于2022年,星期二例2.设某系统的方框图如图所示,试求其传递函数R(S)11G1G3G2C(S)G4-1-H1-H2CG1G2G3G4-H1H2R第61页,共62页,编辑于2022年,星期二第62页,共62页,编辑于2022年,星期二