欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    市场研究的最新数据分析方法.ppt

    • 资源ID:87446749       资源大小:1.24MB        全文页数:25页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    市场研究的最新数据分析方法.ppt

    第第1515章章 市场研究的数据分析方法市场研究的数据分析方法 Chapter 15 Analysis Methods of Market Research Data教学内容教学内容(Teaching content)(Teaching content)介绍以下五种数据分析方法在市场研究中的具体应用。介绍以下五种数据分析方法在市场研究中的具体应用。介绍以下五种数据分析方法在市场研究中的具体应用。介绍以下五种数据分析方法在市场研究中的具体应用。联合联合分析分析多维多维偏好偏好分析分析对应对应分析分析因子因子分析分析 聚类聚类分析分析教学教学内容内容聚类分析聚类分析(Cluster AnalysisCluster Analysis)聚类分析的基本思想:聚类分析的基本思想:根根据据样样本本自自身身的的属属性性,用用数数学学方方法法按按照照某某些些相相似似性性或或差差异异性性指指标标,定定量量地地确确定定样样本本之之间间的的亲亲疏疏关关系系,并并按按这这种种亲亲疏疏关关系系程程度度对对样样本进行聚类本进行聚类。聚类分析的分类聚类分析的分类(classification of cluster analysisclassification of cluster analysis)样品聚类:对事件进行聚类,或是对观测量进行聚类,是对反映被观测对象的特征的变量值进行分类。变量聚类:是当反映事物特征的变量很多时,根据所研究的问题选择部分变量对事物的某一方面进行研究的聚类方法。聚类分析的统计量聚类分析的统计量(Statistics of Clustering AnalysisStatistics of Clustering Analysis)设x1x2xn为n个分类特征指标,xik表示第i个样品的第k个指标值。为了将样品(或变量)进行分类,首先需要引进表示样品之间相似程度的度量,称为聚类统计量。1 1匹配系数匹配系数 当分类指标当分类指标当分类指标当分类指标 为类别标度量时,通常采用匹配系数为类别标度量时,通常采用匹配系数为类别标度量时,通常采用匹配系数为类别标度量时,通常采用匹配系数 作为聚类统计量。第作为聚类统计量。第作为聚类统计量。第作为聚类统计量。第 个样品与第个样品与第个样品与第个样品与第 个样品的匹配系数个样品的匹配系数个样品的匹配系数个样品的匹配系数 其其其其中中中中匹配系数越大,说明两样品越相似,越应该划为同一类。匹配系数越大,说明两样品越相似,越应该划为同一类。匹配系数越大,说明两样品越相似,越应该划为同一类。匹配系数越大,说明两样品越相似,越应该划为同一类。2 2距离距离 当指标中有间隔标度变量时,匹配系数已不再适用,此时采用距离来进行度量,距离越小,相似程度越高,两样品越应该划为一类.在实际问题中,对样品分类常用距离,对变量分类常用相似系数。相似系数可以分为夹角余弦与相关系数。3相似系数聚类分析的方法聚类分析的方法(M Method of Cluster Analysisethod of Cluster Analysis)聚聚类类分分析析的的方方法法中中应应用用最最广广泛泛的的有有两两类类:层层次次聚聚类类法法和和迭迭代代聚类法。层次聚类法又可分为两种:聚集法和分解法聚类法。层次聚类法又可分为两种:聚集法和分解法 聚类分析聚类分析的方法的方法层次聚类法层次聚类法 分解法和聚集法的过程相反,首先把所有的案例归为一类,分解法和聚集法的过程相反,首先把所有的案例归为一类,分解法和聚集法的过程相反,首先把所有的案例归为一类,分解法和聚集法的过程相反,首先把所有的案例归为一类,然后把最不相似的案例分为两类,每一步增加一类,直到每个案然后把最不相似的案例分为两类,每一步增加一类,直到每个案然后把最不相似的案例分为两类,每一步增加一类,直到每个案然后把最不相似的案例分为两类,每一步增加一类,直到每个案例都自成一类为止。例都自成一类为止。例都自成一类为止。例都自成一类为止。迭代聚类法迭代聚类法 层层次次聚聚类类法法在在聚聚类类过过程程中中,当当样样本本量量很很大大时时需需要要占占用用的的计计算算机机内内存存空空间间较较大大,并并且且耗耗时时较较长长。迭迭代代聚聚类类法法克克服服了了层层次次聚聚类类法法的的这这两两个个缺缺点点它它具具有有占占计计算算机机内内存存空空间间小小、速速度度快快的的优优点,适用于大样本的聚类分析。点,适用于大样本的聚类分析。迭代聚类法的优点迭代聚类法的优点占计算机内存空间小占计算机内存空间小速度快速度快迭代聚类法的聚类过程的基本思路迭代聚类法的聚类过程的基本思路 首先指定聚首先指定聚类数,对样类数,对样本进行初始本进行初始分类并计算分类并计算每一类的中每一类的中心心 然后计算每然后计算每个样本点到个样本点到各类中心的各类中心的距离,调整距离,调整样本点的分样本点的分类,把每个类,把每个样本点归入样本点归入与中心距离与中心距离最近的那一最近的那一类类 重复计算每重复计算每一类的中心一类的中心,调整分类,调整分类直到所有样直到所有样本点调整完本点调整完毕为止毕为止。聚类分析的基本步骤聚类分析的基本步骤(B Basic Steps of Cluster Analysisasic Steps of Cluster Analysis)相似性测度相似性测度 选择聚类变量选择聚类变量 聚类聚类 聚类结果的解释和证实聚类结果的解释和证实 偏好图展示偏好图展示 首先要解决的是判断哪些因素是决定分类的关键因素首先要解决的是判断哪些因素是决定分类的关键因素 主要有两种指标来测度:距离和相似系数主要有两种指标来测度:距离和相似系数主要解决两个问题:选定聚类方法;确定形成的类数主要解决两个问题:选定聚类方法;确定形成的类数 对结果进行验证和解释,以保证聚类解是可信的对结果进行验证和解释,以保证聚类解是可信的 以聚类结果和聚类变量为轴做出研究对象的偏好图以聚类结果和聚类变量为轴做出研究对象的偏好图 聚类分析的假设条件和局限性聚类分析的假设条件和局限性(A Assumptions and Limitations of Cluster Analysisssumptions and Limitations of Cluster Analysis)要进行聚类分析必须满足两个假设条件:第一,作为聚类要进行聚类分析必须满足两个假设条件:第一,作为聚类依据的相似性指标是衡量对象间相似性的正确指标;第二,可依据的相似性指标是衡量对象间相似性的正确指标;第二,可以从理论上证明把对象合并成一类是有道理的。以从理论上证明把对象合并成一类是有道理的。其局限性主要在于要评价聚类分析的质量比较难。由于没有标其局限性主要在于要评价聚类分析的质量比较难。由于没有标准统计检验可用,因此无法保证输出结果不是完全偶然事件。准统计检验可用,因此无法保证输出结果不是完全偶然事件。聚类准则指标值、输出结果的合理性和分割样本的可靠性检验聚类准则指标值、输出结果的合理性和分割样本的可靠性检验都能提供有用的检验信息,但是要确切了解哪些类别非常相似、都能提供有用的检验信息,但是要确切了解哪些类别非常相似、哪些对象难以分配到类别里去还是很难。哪些对象难以分配到类别里去还是很难。案例案例15.115.1 欲按价格、质量将不同品牌的电脑分类,其中质量的以百分制进行度量,用质量衡量值表示,看哪些电脑属于物美价廉型,哪些电脑属于性能差、价格昂贵型,以便消费者做出购买决策。下面是对某几个大型商场的13种不同品牌的电脑做了价格质量测定,得到的平均数据如表15-1所示:表15-1 各品牌电脑的价格质量数据品牌代码价格质量衡量值14892.009324560.215733450.508445889.209952310.805563145.507575213.326284430.009593150.8073106103.3068112890.2032123750.6186132589.5955利用统计软件利用统计软件SPSS作作Q型聚类分析,可得到谱系图型聚类分析,可得到谱系图 如果将如果将13个品牌的不同电脑分为四类,那么由谱系图可见:个品牌的不同电脑分为四类,那么由谱系图可见:第一类为第一类为6,9,3,12,属于性价比适中的电脑;,属于性价比适中的电脑;第二类为第二类为1,8,4,属于价格较高,质量很好的电脑;,属于价格较高,质量很好的电脑;第三类为第三类为2,7,10,属于价格高,质量差的电脑;,属于价格高,质量差的电脑;第四类为第四类为5,13,11,属于价格低,质量差的电脑。,属于价格低,质量差的电脑。因子分析因子分析(Factor AnalysisFactor Analysis)因子分析的基本思想(The basic idea of factor analysis)其核心思想是将观测的变量分类,将相关性较高即联系比较紧密的变量分在同一类中。因子分析就是研究如何以最少的信息丢失把众多的观测变量浓缩为少数几个因子。在市场研究中,研究人员会面对大量的变量以及复杂的、多维度的关系结构,要进行进一步的研究分析就离不开对数据的简化,研究人员就可以利用因子分析来定义、解释包含在众多原始变量之中的潜在结构或者关系,并且使用一组少量的、有代表性的因子来表示,这样不但降低了分析难度,而且能够比较好地代表原始结构,并透视数据,进而提高分析的准确性。因子分析的基本模型因子分析的基本模型(Basic Model of Factor AnalysisBasic Model of Factor Analysis)设有n个观测变量,分别为 ,其中 为具有零均值、单位方差的标准化变量,则因子模型的一般表达式形式为:(1)叫做公因子是各个观测变量所共有的因子,解释了变量之间的相关系数。(2)成为特殊因子,它是每个观测变量所特有的因子,相当于多元回归中的残差项,表示该变量不能被公因子所解释的部分(3)称为因子负荷,它是第 个观测变量在第 个公因子上的负荷,相当于多元回归分析中的标准回归系数。因子分析的基本步骤因子分析的基本步骤(Basic Steps of Factor AnalysisBasic Steps of Factor Analysis)定义问题 初步研究设计 构造相关矩阵 确定因子分析方法 确定因子数 因子旋转 因子分析的有效性评价 因子分析结果的进一步运用 因子分析的假设条件和局限性因子分析的假设条件和局限性(Assumptions and Limitations of Factor AnalysisAssumptions and Limitations of Factor Analysis)因子分析的假设条件是变量背后存在一些潜藏因子,并且这些变量能完整、充分地代表这些因子。因子分析最大的局限性在于因子分析的过程主观性很强。因子数目的确定、对它们意义的解释和要选择的旋转方法都要用到分析人员的主观判断。对应分析对应分析 (Correspondence AnalysisCorrespondence Analysis)对应分析的基本思想 对应分析法是在R型和Q型因子分析基础上发展起来的多元统计方法,又称R-Q型因子分析。它是通过对由定性变量构成的二维交互汇总表的频数分析来揭示变量及其类别之间的联系。对应分析的基本步骤确定研究的内容 获取数据 对列联表作对应分析 解释分析结果 评价分析结果 多维偏好分析多维偏好分析 (Multidimensional Preference analysisMultidimensional Preference analysis)多维偏好分析的基本思想(The basic idea of multidimensional preference analysis)在市场研究中,多维偏好分析是运用多元统计理论中的主成分分析方法对消费者的品牌偏好、细分市场和厂商的产品定位等问题做出数量预测,因此我们首先简要介绍下主成分分析法。主成分分析方法 主成分分析是将众多彼此相关的指标化为少数几个彼此不相关综合指标的一种统计分析方法。其基本思想和方法是根据指标间的相关信息从众多的指标中抽取若干综合成分以代表原来众多的指标。具体来说,就是将各个主成分用各个原来指标的线性组合来表示,使这些主成分既能尽可能地反映原指标的信息量,又使各个主成分彼此不相关,达到消减指标间信息重叠的目的。多维偏好分析的基本步骤多维偏好分析的基本步骤(B B B Basic Steps of Multidimensional Preference Analysisasic Steps of Multidimensional Preference Analysis)进行主成分分析 收集数据 作偏好图并解释结果的意义 确定研究的问题 评价分析结果 联合分析联合分析(Joint AnalysisJoint Analysis)联合分析的基本思想(The basic idea of joint analysis)(The basic idea of joint analysis)其基本思想是:根据若干现实产品的属性及每一属性的具体水平,组成多种假定产品,然后要求消费者对这些产品排序或评分,运用统计技术对排序或评分结果进行处理,估计每一属性水平的“效用值”,从而对每一属性以及属性水平的重要程度做出量化评价的方法。联合分析的基本模型(The basic model of joint analysis)(The basic model of joint analysis)其中,y是全轮廓的偏好得分;a为截距;bij是第i个属性第j个水平的效用值或贡献;ki表示第i个属性的水平;m表示属性数;xij表示不同属性水平的哑变量,如果第i个属性的第j个水平出现,xij的取值为1,其他情况xij的取值为0;u(x)是全轮廓的总效用。联合分析的基本步骤联合分析的基本步骤 (Basic Steps of Joint AnalysisBasic Steps of Joint Analysis)产品模拟 确定产品或服务的属性和属性水平 数据的收集 确定研究对象计算属性的效用 评价分析的结果 市场预测 联合分析的假设条件和局限性联合分析的假设条件和局限性 (Assumptions and Limitations of Joint AnalysisAssumptions and Limitations of Joint Analysis)联合分析的基本假设条件是:消费者是通过加总他们对产品概念各个属性的效用值对该产品概念做出评价并做出选择。联合分析法假设每个属性都不冗余,并且属性之间不存在相互作用。局限性在于,当品牌形象和名称很重要时,消费者可能不根据属性对品牌或名称进行评价,即使消费者考虑产品属性,取舍模型可能也不能很好地代表选择过程;另一个局限性是数据收集可能非常复杂,尤其是当涉及大量的属性或必须在个体水平下对模型进行估算时。

    注意事项

    本文(市场研究的最新数据分析方法.ppt)为本站会员(asd****56)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开