江苏省泰州市靖江外国语学校2023学年数学九年级上学期期末学业水平测试模拟试题含解析.doc
-
资源ID:87453409
资源大小:1.09MB
全文页数:19页
- 资源格式: DOC
下载积分:5金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
江苏省泰州市靖江外国语学校2023学年数学九年级上学期期末学业水平测试模拟试题含解析.doc
2023学年九年级上学期数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1一元二次方程的左边配成完全平方后所得方程为( )ABCD2如图,D,E分别是ABC的边AB,AC上的中点,CD与BE交于点O,则SDOE:SBOC的值为()ABCD3我们把宽与长的比等于黄金比的矩形称为黄金矩形.如图,在黄金矩形中,的平分线交边于点,于点,则下列结论错误的是( )ABCD4的绝对值是( )AB2020CD5若二次函数的图像与轴有两个交点,则实数的取值范围是( )ABCD6判断一元二次方程是否有实数解,计算的值是( )ABCD7在小孔成像问题中,如图所示,若为O到AB的距离是18 cm,O到CD的距离是6 cm,则像CD的长是物体AB长的( )ABC2倍D3倍8下列事件中,为必然事件的是( )A购买一张彩票,中奖B打开电视,正在播放广告C任意购买一张电影票,座位号恰好是“排号”D一个袋中只装有个黑球,从中摸出一个球是黑球9若,则下列各式一定成立的是( )ABCD10已知二次函数的图象如图所示,则下列结论正确的是( )ABCD的符号不能确定11已知3x4y,则()ABCD以上都不对12如图,在ABC中,B=90°,AB=6cm,BC=12cm,动点P从点A开始沿边AB向B以1cm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以2cm/s的速度移动(不与点C重合)如果P、Q分别从A、B同时出发,那么经过()秒,四边形APQC的面积最小A1B2C3D4二、填空题(每题4分,共24分)13已知的半径为4,的半径为R,若与相切,且,则R的值为_14如图,在平面直角坐标系中,OB在x轴上,ABO90°,点A的坐标为(2,4),将AOB绕点A逆时针旋转90°,点O的对应点C恰好落在反比例函数y的图象上,则k的值为_15当_时,的值最小.16把一副普通扑克牌中的13张红桃牌洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的牌上的数字是3的倍数的概率为_.17可乐和奶茶含有大量的咖啡因,世界卫生组织建议青少年每天摄入的咖啡因不能超过0.000085kg,将数据0.000085用科学记数法表示为_18若等腰三角形的两边长恰为方程的两实数根,则的周长为_.三、解答题(共78分)19(8分)已知二次函数与轴交于、(在的左侧)与轴交于点,连接、. (1)如图1,点是直线上方抛物线上一点,当面积最大时,点分别为轴上的动点,连接、,求的周长最小值;(2)如图2,点关于轴的对称点为点,将抛物线沿射线的方向平移得到新的拋物线,使得交轴于点(在的左侧). 将绕点顺时针旋转至. 抛物线的对称轴上有动点,坐标系内是否存在一点,使得以、为顶点的四边形是菱形,若存在,请直接写出点的坐标;若不存在,请说明理由.20(8分)如图,是的弦,为半径的中点,过作交弦于点,交于点,且(1)求证:是的切线;(2)连接、,求的度数:(3)如果,求的半径21(8分)如图,AB=3AC,BD=3AE,又BDAC,点B,A,E在同一条直线上求证:ABDCAE22(10分)已知正比例函数y=k1x(k10)与反比例函数的图象交于A、B两点,点A的坐标为(2,1) (1)求正比例函数、反比例函数的表达式;(2)求点B的坐标23(10分)用圆规、直尺作图,不写作法,但要保留作图痕迹如图,“幸福”小区为了方便住在A区、B区、和C区的居民(A区、B区、和C区之间均有小路连接),要在小区内设立物业管理处P如果想使这个物业管理处P到A区、B区、和C区的距离相等,应将它建在什么位置?请在图中作出点P24(10分)如图,某科技物展览大厅有A、B两个入口,C、D、E三个出口.小昀任选一个入口进入展览大厅, 参观结束后任选一个出口离开.(1)若小昀已进入展览大厅,求他选择从出口C离开的概率.(2)求小昀选择从入口A进入,从出口E离开的概率.(请用列表或画树状图求解)25(12分)如图,点D,E分别是不等边ABC(即AB,BC,AC互不相等)的边AB,AC的中点点O是ABC所在平面上的动点,连接OB,OC,点G,F分别是OB,OC的中点,顺次连接点D,G,F,E.(1)如图,当点O在ABC的内部时,求证:四边形DGFE是平行四边形;(2)若四边形DGFE是菱形,则OA与BC应满足怎样的数量关系?(直接写出答案,不需要说明理由)26感知:如图,在四边形ABCD中,ABCD,B90°,点P在BC边上,当APD90°时,可知ABPPCD(不要求证明)探究:如图,在四边形ABCD中,点P在BC边上,当BCAPD时,求证:ABPPCD拓展:如图,在ABC中,点P是边BC的中点,点D、E分别在边AB、AC上若BCDPE45°,BC6,BD4,则DE的长为 参考答案一、选择题(每题4分,共48分)1、B【解析】把常数项5移项后,应该在左右两边同时加上一次项系数2的一半的平方【详解】把方程x22x50的常数项移到等号的右边,得到x22x5,方程两边同时加上一次项系数一半的平方,得到:x22x+(1)25+(1)2,配方得:(x1)21故选B【点睛】本题考查了配方法解一元二次方程配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数2、C【分析】DE为ABC的中位线,则DEBC,DEBC,再证明ODEOCB,由相似三角形的性质即可得到结论【详解】解:点D、E分别为AB、AC的中点,DE为ABC的中位线,DEBC,DEBC,ODEOCB,OEDOBC,ODEOCB,故选:C【点睛】本题考查了相似三角形的判定与性质,三角形中位线定理,熟练掌握相似三角形的性质定理是解题的关键3、C【分析】设,则,根据黄金矩形的概念结合图形计算,据此判断即可【详解】因为矩形宽与长的比等于黄金比,因此,设,则,则选项A.,B.,D.正确,C.选项中等式, ,;故选:C.【点睛】本题考查的是黄金分割、矩形的性质,掌握黄金比值为是解题的关键4、B【分析】根据绝对值的定义直接解答【详解】解:根据绝对值的概念可知:|2121|2121,故选:B【点睛】本题考查了绝对值解题的关键是掌握绝对值的概念,注意掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;1的绝对值是15、D【解析】由抛物线与x轴有两个交点可得出=b2-4ac0,进而可得出关于m的一元一次不等式,解之即可得出m的取值范围【详解】抛物线y=x2-2x+m与x轴有两个交点,=b2-4ac=(-2)2-4×1×m0,即4-4m0,解得:m1故选D【点睛】本题考查了抛物线与x轴的交点,牢记“当=b2-4ac0时,抛物线与x轴有2个交点”是解题的关键6、B【解析】首先将一元二次方程化为一般式,然后直接计算判别式即可.【详解】一元二次方程可化为:故答案为B.【点睛】此题主要考查一元二次方程的根的判别式的求解,熟练掌握,即可解题.7、A【分析】作OEAB于E,OFCD于F,根据题意得到AOBCOD,根据相似三角形的对应高的比等于相似比计算即可【详解】作OEAB于E,OFCD于F,由题意得,ABCD,AOBCOD,= =,像CD的长是物体AB长的.故答案选:A.【点睛】本题考查了相似三角形的应用,解题的关键是熟练的掌握相似三角形的应用.8、D【分析】根据必然事件的概念对各选项分析判断即可【详解】解:A、购买一张彩票,有可能中奖,也有可能不中奖,是随机事件,故A不合题意;B、打开电视,可能正在播放广告,也可能在播放其他节目,是随机事件,故B不合题意;C、购买电影票时,可能恰好是“7排8号”,也可能是其他位置,是随机事件,故C不合题意;D、从只装有5个黑球的袋子中摸出一个球,摸出的肯定是黑球,是必然事件,故D符合题意;故选D【点睛】本题主要考查确定事件;在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫做必然发生的事件,简称必然事件9、B【分析】由 等式的两边都除以,从而可得到答案【详解】解: 等式的两边都除以:, 故选B【点睛】本题考查的是把等积式化为比例式的方法,考查的是比的基本性质,等式的基本性质,掌握以上知识是解题的关键10、A【分析】由题意根据二次函数的图象与性质即可求出答案判断选项【详解】解:由图象可知开口向上a0,与y轴交点在上半轴c0,ac0,故选A.【点睛】本题考查二次函数的图象与性质,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型11、A【分析】根据3x4y得出xy,再代入要求的式子进行计算即可【详解】3x4y,xy,;故选:A【点睛】此题考查了比例的性质,熟练掌握比例的性质即两内项之积等于两外项之积是解题的关键12、C【分析】根据等量关系“四边形APQC的面积=三角形ABC的面积-三角形PBQ的面积”列出函数关系求最小值【详解】解:设P、Q同时出发后经过的时间为ts,四边形APQC的面积为Scm2,则有:S=SABC-SPBQ= ×12×6- (6-t)×2t=t2-6t+36=(t-3)2+1当t=3s时,S取得最小值故选C【点睛】本题考查了函数关系式的求法以及最值的求法,解题的关键是根据题意列出函数关系式,并根据二次函数的性质求出最值二、填空题(每题4分,共24分)13、6或14【解析】O1和O2相切,有两种情况需要考虑:内切和外切内切时,O2的半径=圆心距+O1的半径;外切时,O2的半径=圆心距-O1的半径【详解】若与外切,则有4+R=10,解得:R=6;若与内切,则有R-4=10,解得:R=14,故答案为6或14.14、1【解析】根据题意和旋转的性质,可以得到点C的坐标,把点C坐标代入反比例函数y=中,即可求出k的值【详解】OB在x轴上,ABO=90°,点A的坐标为(2,4),OB=2,AB=4将AOB绕点A逆时针旋转90°,AD=4,CD=2,且AD/x轴点C的坐标为(6,2),点O的对应点C恰好落在反比例函数y=的图象上,k=2,故答案为1【点睛】本题考查反比例函数图象上点的坐标特征、坐标与图形的变化-旋转,解答本题的关键是明确题意,利用数形结合的思想解答15、【分析】根据二次根式的意义和性质可得答案.【详解】解:由二次根式的性质可知,当时,取得最小值0故答案为2【点睛】本题考查二次根式的“双重非负性”即“根式内的数或式大于等于零”和“根式的计算结果大于等于零”16、【分析】根据概率的定义求解即可【详解】一副普通扑克牌中的13张红桃牌,牌上的数字是3的倍数有4张概率为故本题答案为:【点睛】本题考查了随机事件的概率17、8.1×10-1【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.000081=8.1×10-1故答案为:8.1×10-1【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定18、1【分析】先求出一元二次方程的解,再进行分类讨论求周长即可【详解】,解得:,当等腰三角形的三边分别为3,3,6时,3+3=6,不满足三边关系,故该等腰三角形不存在;当等腰三角形的三边分别为6,6,3时,满足三边关系,该等腰三角形的周长为:6+6+3=1故答案为:1【点睛】本题考查一元二次方程的解法与等腰三角形的结合,做题时需注意等腰三角形中边的分类讨论及判断是否满足三边关系三、解答题(共78分)19、(1);(1)存在,理由见解析;,【分析】(1)利用待定系数法求出A,B,C的坐标,如图1中,作PQy轴交BC于Q,设P,则Q,构建二次函数确定点P的坐标,作P关于y轴的对称点P1(-2,6),作P关于x轴的对称点P1(2,-6),的周长最小,其周长等于线段的长,由此即可解决问题(1)首先求出平移后的抛物线的解析式,确定点H,点C的坐标,分三种情形,当OC=CS时,可得菱形OCS1K1,菱形OCS1K1当OC=OS时,可得菱形OCK3S3,菱形OCK2S2当OC是菱形的对角线时,分别求解即可解决问题【详解】解:(1)如图,过点作轴平行线,交线段于点, 设,=-(m1-2)1+2,m=2时,PBC的面积最大,此时P(2,6) 作点关于轴的对称点,点关于轴的对称点,连接交轴、轴分别为,此时的周长最小,其周长等于线段的长;,. (1)如图,E(0,-2),平移后的抛物线经过E,B,抛物线的解析式为y=-x1+bx-2,把B(8,0)代入得到b=2,平移后的抛物线的解析式为y=-x+2x-2=-(x-1)(x-8),令y=0,得到x=1或8,H(1,0),CHB绕点H顺时针旋转90°至CHB,C(6,1),当OC=CS时,可得菱形OCS1K1,菱形OCS1K1,OC=CS=1,可得S1(5,1-),S1(5,1+),点C向左平移一个单位,向下平移得到S1,点O向左平移一个单位,向下平移个单位得到K1,K1(-1,-),同法可得K1(-1,),当OC=OS时,可得菱形OCK3S3,菱形OCK2S2,同法可得K3(11,1-),K2(11,1+),当OC是菱形的对角线时,设S5(5,m),则有51+m1=11+(1-m)1,解得m=-5,S5(5,-5),点O向右平移5个单位,向下平移5个单位得到S5,C向上平移5个单位,向左平移5个单位得到K5,K5(1,7),综上所述,满足条件的点K的坐标为(-1,-)或(-1,)或(11,1-)或(11,1+)或(1,7)【点睛】本题属于二次函数综合题,考查了二次函数的性质,平移变换,翻折变换,菱形的判定和性质,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题,学会用分类讨论的思想思考问题.20、(1)证明见解析; (2)30°;(3)【分析】(1)连接OB,由圆的半径相等和已知条件证明OBC90°,即可证明BC是O的切线;(2)连接OF,AF,BF,首先证明OAF是等边三角形,再利用圆周角定理:同弧所对的圆周角是所对圆心角的一半即可求出ABF的度数;(3)作CGBE于G,如图,利用等腰三角形的性质得BG5,再证明OABECG,则sinECGsinOAB,于是可计算出CE13,从而得到DE2,由,得, ,即可求出的半径.【详解】连接,又,是的切线;(2)连接OF,AF,BF,又,是等边三角形,(3)过点作于,在中,sinECGsinOAB,又,由,得:,的半径为【点睛】此题考查了切线的判定,以及相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解本题的关键21、见解析【分析】根据已知条件,易证得AB:AC和BD:AE的值相等,由BDAC,得EAC=B;由此可根据SAS判定两个三角形相似【详解】证明:,【点睛】本题考查了相似三角形的判定,熟练掌握相似三角形的判定是解题的关键22、(1)正比例函数、反比例函数的表达式为:,;(2)B点坐标是(-2,-1)【解析】试题分析:(1)把点A、B的坐标分别代入函数y=k1x(k10)与函数中求出k1和k2的值,即可得到两个函数的解析式;(2)把(1)中所得两个函数的解析式组成方程组,解方程组即可得到点B的坐标.试题解析:解:(1)把点A(2,1)分别代入y=k1x与 可得:,k2=2 ,正比例函数、反比例函数的表达式分别为:,;(2)由题意得方程组: ,解得: , ,点B的坐标是(-2,-1).23、见解析【分析】物业管理处P到B,A的距离相等,那么应在BA的垂直平分线上,到A,C的距离相等,应在AC的垂直平分线上,那么到A区、B区、C区的距离相等的点应是这两条垂直平分线的交点;【详解】解:如图所示:【点睛】本题主要考查了作图应用与设计作图,掌握作图应用与设计作图是解题的关键.24、 (1); (2)【分析】(1)用列举法即可求得;(2)画树状图(见解析)得出所有可能的结果,再分析求解即可.【详解】(1)小昀选择出口离开时的所有可能有3种:C、D、E,每一种可能出现的可能性都相等,因此他选择从出口C离开的概率为:;(2)根据题意画树状图如下:由树状图可以看出,所有可能出现的结果共有6种,即(AC)、(AD)、(AE)、(BC)、(BD)、(BE),这些结果出现的可能性相等所以小昀选择从入口A进入,出口E离开(即AE)的概率为.【点睛】本题考查了用列举法求概率,列出事件所有可能的结果是解题关键.25、(1)见详解;(2)点O的位置满足两个要求:AOBC,且点O不在射线CD、射线BE上理由见详解【分析】(1)根据三角形的中位线定理可证得DEGF,DEGF,即可证得结论;(2)根据三角形的中位线定理结合菱形的判定方法分析即可.【详解】(1)D、E分别是边AB、AC的中点DEBC,DEBC同理,GFBC,GFBCDEGF,DEGF四边形DEFG是平行四边形;(2)点O的位置满足两个要求:AOBC,且点O不在射线CD、射线BE上连接AO,由(1)得四边形DEFG是平行四边形,点D,G,F分别是AB,OB,OC的中点,当AOBC时,GF=DF,四边形DGFE是菱形【点睛】本题主要考查三角形的中位线定理,平行四边形、菱形的判定,平行四边形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.26、探究:见解析;拓展:.【分析】感知:先判断出BAPDPC,进而得出结论;探究:根据两角相等,两三角形相似,进而得出结论;拓展:利用BDPCPE得出比例式求出CE,结合三角形内角和定理证得ACAB且ACAB;最后在直角ADE中利用勾股定理来求DE的长度【详解】解:感知:APD90°,APB+DPC90°,B90°,APB+BAP90°,BAPDPC,ABCD,B90°,CB90°,ABPPCD;探究:APCBAP+B,APCAPD+CPD,BAP+BAPD+CPDBAPD,BAPCPDBC,ABPPCD;拓展:同探究的方法得出,BDPCPE,点P是边BC的中点,BPCP3,BD4,CE,BC45°,A180°BC90°,即ACAB且ACAB6,AEACCE6,ADABBD642,在RtADE中,DE故答案是:【点睛】此题是相似综合题主要考查了相似三角形的判定与性质、勾股定理、三角形内角和定理以及三角形外角的性质解本题的关键是判断出ABPPCD