欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    Ch线性规划图解法实用.pptx

    • 资源ID:87525096       资源大小:172.07KB        全文页数:10页
    • 资源格式: PPTX        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    Ch线性规划图解法实用.pptx

    1.2 图解法 Graphical Method第1页/共10页13 四月 2023图解法的步骤:图解法的步骤:1.求可行解集合。求可行解集合。分别求出满足每个约束包括变量非分别求出满足每个约束包括变量非 负要求的负要求的区域,其交集就是可行解集合,或称为区域,其交集就是可行解集合,或称为可行域可行域;2.绘制目标函数图形。绘制目标函数图形。先过原点作一条矢量指向点(先过原点作一条矢量指向点(c1,c2),矢,矢量的方向就是目标函数增加的方向,称为梯度方向,再作一条量的方向就是目标函数增加的方向,称为梯度方向,再作一条与矢量垂直的直线,这条直线就是目标函数图形;与矢量垂直的直线,这条直线就是目标函数图形;3.求最优解。求最优解。依据目标函数求最大或最小移动目标函数直线,依据目标函数求最大或最小移动目标函数直线,直线与可行域相交的点对应的坐标就是直线与可行域相交的点对应的坐标就是最优解。最优解。一般地,将目标函数直线放在可行域中一般地,将目标函数直线放在可行域中 求最大值时直线沿着矢量方向移动求最大值时直线沿着矢量方向移动 求最小值时沿着矢量的反方向移动求最小值时沿着矢量的反方向移动1.2 图解法图解法The Graphical Method第2页/共10页13 四月 2023x1x2O1020304010203040(300,400)(15,10)最优解最优解X=(15,10)最优值最优值Z=8500例例1-71.2 图解法图解法The Graphical Method第3页/共10页13 四月 2023246x1x2246最优解最优解X=(3,1)最优值最优值Z=5(3,1)min Z=x1+2x2例例1-8(1,2)1.2 图解法图解法The Graphical Method第4页/共10页13 四月 2023246x1x2246X(2)(3,1)X(1)(1,3)(5,5)min Z=5x1+5x2例例1-9有无穷多个最优解有无穷多个最优解即具有多重解即具有多重解,通解为通解为 01 当当=0.5时时=(x1,x2)=0.5(1,3)+0.5(3,1)=(2,2)1.2 图解法图解法The Graphical Method第5页/共10页13 四月 2023246x1x2246(1,2)无界解无界解(无最优解无最优解)max Z=x1+2x2例例1-101.2 图解法图解法The Graphical Method第6页/共10页13 四月 2023x1x2O10203040102030405050无可行解无可行解即无最优解即无最优解max Z=10 x1+4x2例例1-111.2 图解法图解法The Graphical Method第7页/共10页13 四月 2023由以上例题可知,线性规划的解有由以上例题可知,线性规划的解有4种形式种形式:1.有唯一最优解有唯一最优解(例例1-7例例1-8)2.有多重解有多重解(例例1-9)3.有无界解有无界解(例例1-10)4.无可行解无可行解(例例1-11)1、2情形为有最优解情形为有最优解3、4情形为无最优解情形为无最优解1.2 图解法图解法The Graphical Method第8页/共10页13 四月 20231.通过图解法了解线性规划有几种解的形式通过图解法了解线性规划有几种解的形式2.作图的关键有三点作图的关键有三点 (1)可行解区域要画正确可行解区域要画正确 (2)目标函数增加的方向不能画错目标函数增加的方向不能画错 (3)目标函数的直线怎样平行移动目标函数的直线怎样平行移动作业:教材习题作业:教材习题 1.7 1.2 图解法图解法The Graphical Method下一节:线性规划的标准型下一节:线性规划的标准型第9页/共10页13 四月 2023感谢您的欣赏!第10页/共10页

    注意事项

    本文(Ch线性规划图解法实用.pptx)为本站会员(莉***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开