2019版-创新设计-高考总复习-数学-人教A版-理科-第十一章-第1节.pptx
-
资源ID:87582146
资源大小:847.78KB
全文页数:31页
- 资源格式: PPTX
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2019版-创新设计-高考总复习-数学-人教A版-理科-第十一章-第1节.pptx
最新考纲1.理解分类加法计数原理和分步乘法计数原理;2.会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.第1页/共31页1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法.那么完成这件事共有N_种不同的方法.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N_种不同的方法.知 识 梳 理mnmn第2页/共31页3.分类加法和分步乘法计数原理,区别在于:分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事.第3页/共31页常用结论与微点提醒1.切实理解“完成一件事”的含义,以确定需要分类还是需要分步进行.2.分类的关键在于要做到“不重不漏”,分步的关键在于要正确设计分步的程序,即合理分类,准确分步.第4页/共31页1.思考辨析(在括号内打“”或“”)(1)在分类加法计数原理中,两类不同方案中的方法可以相同.()(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.()(3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.()(4)在分步乘法计数原理中,事情是分两步完成的,其中任何一个单独的步骤都能完成这件事.()诊 断 自 测第5页/共31页解析分类加法计数原理,每类方案中的方法都是不同的,每一种方法都能完成这件事;分步乘法计数原理,每步的方法都是不同的,每步的方法只能完成这一步,不能完成这件事,所以(1),(4)均不正确.答案(1)(2)(3)(4)第6页/共31页2.从3名女同学和2名男同学中选1人主持主题班会,则不同的选法种数为()A.6B.5C.3D.2解析5个人中每一个都可主持,所以共有5种选法.答案B第7页/共31页3.(选修23P28B2改编)现有4种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有()A.24种B.30种C.36种D.48种解析需要先给C块着色,有4种结果;再给A块着色,有3种结果;再给B块着色,有2种结果;最后给D块着色,有2种结果,由分步乘法计数原理知共有432248(种).答案D第8页/共31页4.5位同学报名参加两个课外活动小组,每位同学限报其中一个小组,则不同的报名方法有_种(用数字作答).解析每位同学都有2种报名方法,因此,可分五步安排5名同学报名,由分步乘法计数原理,总的报名方法共2222232(种).答案32第9页/共31页5.(2018西安月考)已知某公园有5个门,从任一门进,另一门出,则不同的走法的种数为_(用数字作答).解析分两步,第一步选一个门进有5种方法,第二步再选一个门出有4种方法,所以共有5420种走法.答案20第10页/共31页考点一分类加法计数原理的应用【例1】(1)满足a,b1,0,1,2,且关于x的方程ax22xb0有实数解的有序数对(a,b)的个数为_.(2)在所有的两位数中,个位数字大于十位数字的两位数的个数为_.解析(1)当a0时,b的值可以是1,0,1,2,故(a,b)的个数为4;当a0时,要使方程ax22xb0有实数解,需使44ab0,即ab1.若a1,则b的值可以是1,0,1,2,(a,b)的个数为4;第11页/共31页若a1,则b的值可以是1,0,1,(a,b)的个数为3;若a2,则b的值可以是1,0,(a,b)的个数为2.由分类加法计数原理可知,(a,b)的个数为443213.(2)当个位数字为2时,十位数字为1,共1个;当个位数字为3时,十位数字为1,2,共2个;当个位数字为4时,十位数字为1,2,3,共3个;当个位数字为9时,十位数字为1,2,3,4,7,8,共8个;由分类加法计数原理可知满足条件的两位数的个数为123836.答案(1)13(2)36第12页/共31页规律方法分类标准是运用分类加法计数原理的难点所在,应抓住题目中的关键词、关键元素和关键位置.(1)根据题目特点恰当选择一个分类标准.(2)分类时应注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法是不同的方法,不能重复.(3)分类时除了不能交叉重复外,还不能有遗漏,如本例(1)中易漏a0这一类.第13页/共31页【训练1】(1)从集合1,2,3,10中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为()A.3B.4C.6D.8(2)如图,从A到O有_种不同的走法(不重复过一点).第14页/共31页解析(1)以1为首项的等比数列为1,2,4;1,3,9;以2为首项的等比数列为2,4,8;以4为首项的等比数列为4,6,9;把这4个数列的顺序颠倒,又得到另外的4个数列,所求的数列共有2(211)8个.(2)分3类:第一类,直接由A到O,有1种走法;第二类,中间过一个点,有ABO和ACO共2种不同的走法;第三类,中间过两个点,有ABCO和ACBO共2种不同的走法,由分类加法计数原理可得共有1225种不同的走法.答案(1)D(2)5第15页/共31页考点二分步乘法计数原理的应用【例2】(1)(2018石家庄模拟)教学大楼共有五层,每层均有两个楼梯,由一层到五层的走法有()A.10种B.25种C.52种D.24种(2)(2016全国卷)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()第16页/共31页A.24B.18C.12D.9第17页/共31页解析(1)每相邻的两层之间各有2种走法,共分4步.由分步乘法计数原理,共有24种不同的走法.(2)分两步,第一步,从EF,有6条可以选择的最短路径;第二步,从FG,有3条可以选择的最短路径.由分步乘法计数原理可知有6318条可以选择的最短路径.故选B.答案(1)D(2)B第18页/共31页规律方法(1)在第(1)题中,易误认为分5步完成,错选B.(2)利用分步乘法计数原理应注意:要按事件发生的过程合理分步,即分步是有先后顺序的;各步中的方法互相依存,缺一不可,只有各步骤都完成才算完成这件事.第19页/共31页【训练2】(1)用0,1,2,3,4,5可组成无重复数字的三位数的个数为_.(2)(2018合肥质检)五名学生报名参加四项体育比赛,每人限报一项,则不同的报名方法的种数为_.五名学生争夺四项比赛的冠军(冠军不并列),则获得冠军的可能性有_种.第20页/共31页解析(1)可分三步给百、十、个位放数字,第一步:百位数字有5种放法;第二步:十位数字有5种放法;第三步:个位数字有4种放法,根据分步乘法计数原理,三位数的个数为554100.(2)五名学生参加四项体育比赛,每人限报一项,可逐个学生落实,每个学生有4种报名方法,共有45种不同的报名方法.五名学生争夺四项比赛的冠军,可对4个冠军逐一落实,每个冠军有5种获得的可能性,共有54种获得冠军的可能性.答案(1)100(2)4554第21页/共31页考点三两个计数原理的综合应用(多多维探究探究)命题角度命题角度1组数、组点、组线、组对及抽取问题组数、组点、组线、组对及抽取问题【例31】如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是()A.48B.18C.24D.36解析在正方体中,每一个表面有四条棱与之垂直,六个表面,共构成24个“正交线面对”;而正方体的六个对角面中,每个对角面有两条面对角线与之垂直,共构成12个“正交线面对”,所以共有36个“正交线面对”.答案D第22页/共31页命题角度2涂色、种植问题【例32】(一题多解)如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,求不同的染色方法种数.第23页/共31页第24页/共31页法二以S,A,B,C,D顺序分步染色.第一步:S点染色,有5种方法;第二步:A点染色,与S在同一条棱上,有4种方法;第三步:B点染色,与S,A分别在同一条棱上,有3种方法;第四步:C点染色,也有3种方法,但考虑到D点与S,A,C相邻,需要针对A与C是否同色进行分类,当A与C同色时,D点有3种染色方法;当A与C不同色时,因为C与S,B也不同色,所以C点有2种染色方法,D点也有2种染色方法.由分步乘法、分类加法计数原理得不同的染色方法共有543(1322)420(种).第25页/共31页规律方法(1)注意在综合应用两个原理解决问题时,一般是先分类再分步.在分步时可能又用到分类加法计数原理.注意对于较复杂的两个原理综合应用的问题,可恰当地列出示意图或列出表格,使问题形象化、直观化.(2)解决涂色问题,可按颜色的种数分类,也可按不同的区域分步完成.例题中,相邻顶点不同色,要按A,C和B,D是否同色分类处理.第26页/共31页【训练3】(1)(一题多解)(2018大同质检)如图所示,用4种不同的颜色涂入图中的矩形A,B,C,D中,要求相邻的矩形涂色不同,则不同的涂法有()A.72种B.48种C.24种D.12种(2)如图所示,在连结正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有_个(用数字作答).第27页/共31页解析(1)法一首先涂A有4种涂法,则涂B有3种涂法,C与A,B相邻,则C有2种涂法,D只与C相邻,则D有3种涂法,所以共有432372种涂法.法二按要求涂色至少需要3种颜色,故分两类:一是4种颜色都用,这时A有4种涂法,B有3种涂法,C有2种涂法,D有1种涂法,共有432124(种)涂法;二是用3种颜色,这时A,B,C的涂法有43224(种),D只要不与C同色即可,故D有2种涂法,所以不同的涂法共有2424272(种).第28页/共31页(2)把与正八边形有公共边的三角形分为两类:第一类,有一条公共边的三角形共有8432(个).第二类,有两条公共边的三角形共有8个.由分类加法计数原理知,共有32840(个).答案(1)A(2)40第29页/共31页第30页/共31页谢谢大家观赏!第31页/共31页