欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    最新数学(理科)高三一轮复习系列《一轮复习讲义》61第九章 平面解析几何 9.7 抛物线58.pptx

    • 资源ID:87690174       资源大小:3.67MB        全文页数:83页
    • 资源格式: PPTX        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    最新数学(理科)高三一轮复习系列《一轮复习讲义》61第九章 平面解析几何 9.7 抛物线58.pptx

    9.7抛物线第九章平面解析几何NEIRONGSUOYIN内容索引基础知识 自主学习题型分类 深度剖析课时作业1基础知识 自主学习PART ONE平面内与一个定点F和一条定直线l(l不经过点F)的距离_的点的轨迹叫做抛物线.点F叫做抛物线的_,直线l叫做抛物线的_.1.抛物线的概念知识梳理ZHISHISHULI相等焦点准线2.抛物线的标准方程与几何性质标准方程y22px(p0)y22px(p0)x22py(p0)x22py(p0)p的几何意义:焦点F到准线l的距离图形顶点坐标O(0,0)对称轴x轴y轴焦点坐标离心率e1准线方程范围x0,yRx0,yRy0,xRy0,xR开口方向向右向左向上向下1.若抛物线定义中定点F在定直线l上时,动点的轨迹是什么图形?提示过点F且与l垂直的直线.2.直线与抛物线只有一个交点是直线与抛物线相切的什么条件?提示直线与抛物线的对称轴平行时,只有一个交点,但不是相切,所以直线与抛物线只有一个交点是直线与抛物线相切的必要不充分条件.【概念方法微思考】(3)抛物线既是中心对称图形,又是轴对称图形.()题组一思考辨析1.判断下列结论是否正确(请在括号中打“”或“”)(1)平面内与一个定点F和一条定直线l的距离相等的点的轨迹一定是抛物线.()基础自测JICHUZICE1234567(5)过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的线段叫做抛物线的通径,那么抛物线x22ay(a0)的通径长为2a.()1234567题组二教材改编12345672.P69例4过抛物线y24x的焦点的直线l交抛物线于P(x1,y1),Q(x2,y2)两点,如果x1x26,则|PQ|等于A.9 B.8 C.7 D.6解析抛物线y24x的焦点为F(1,0),准线方程为x1.根据题意可得,|PQ|PF|QF|x11x21x1x228.12345673.P73A组T3若抛物线y24x的准线为l,P是抛物线上任意一点,则P到准线l的距离与P到直线3x4y70的距离之和的最小值是解析由抛物线定义可知点P到准线l的距离等于点P到焦点F的距离,由抛物线y24x及直线方程3x4y70可得直线与抛物线相离.点P到准线l的距离与点P到直线3x4y70的距离之和的最小值为点F(1,0)到直线3x4y70的距离,4.P72T1已知抛物线的顶点是原点,对称轴为坐标轴,并且经过点P(2,4),则该抛物线的标准方程为_.解析设抛物线方程为y2mx(m0)或x2my(m0).将P(2,4)代入,分别得方程为y28x或x2y.1234567y28x或x2y题组三易错自纠5.设抛物线y28x上一点P到y轴的距离是4,则点P到该抛物线焦点的距离是A.4 B.6 C.8 D.121234567解析如图所示,抛物线的准线l的方程为x2,F是抛物线的焦点,过点P作PAy轴,垂足是A,延长PA交直线l于点B,则|AB|2.由于点P到y轴的距离为4,则点P到准线l的距离|PB|426,所以点P到焦点的距离|PF|PB|6.故选B.12345676.已知抛物线C与双曲线x2y21有相同的焦点,且顶点在原点,则抛物线C的方程是12345677.设抛物线y28x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是_.1,1解析Q(2,0),当直线l的斜率不存在时,不满足题意,故设直线l的方程为yk(x2),代入抛物线方程,消去y整理得k2x2(4k28)x4k20,由(4k28)24k24k264(1k2)0,解得1k1.2题型分类深度剖析PART TWO题型一抛物线的定义和标准方程命题点1定义及应用例1设P是抛物线y24x上的一个动点,若B(3,2),则|PB|PF|的最小值为_.多维探究多维探究4解析如图,过点B作BQ垂直准线于点Q,交抛物线于点P1,则|P1Q|P1F|.则有|PB|PF|P1B|P1Q|BQ|4,即|PB|PF|的最小值为4.1.若将本例中的B点坐标改为(3,4),试求|PB|PF|的最小值.解由题意可知点B(3,4)在抛物线的外部.|PB|PF|的最小值即为B,F两点间的距离,F(1,0),引申探究2.若将本例中的条件改为:已知抛物线方程为y24x,直线l的方程为xy50,在抛物线上有一动点P到y轴的距离为d1,到直线l的距离为d2,求d1d2的最小值.解由题意知,抛物线的焦点为F(1,0).点P到y轴的距离d1|PF|1,所以d1d2d2|PF|1.易知d2|PF|的最小值为点F到直线l的距离,命题点2求标准方程例2设抛物线C:y22px(p0)的焦点为F,点M在C上,|MF|5,若以MF为直径的圆过点(0,2),则C的标准方程为A.y24x或y28x B.y22x或y28xC.y24x或y216x D.y22x或y216x(1)与抛物线有关的最值问题,一般情况下都与抛物线的定义有关.“看到准线想焦点,看到焦点想准线”,这是解决与过抛物线焦点的弦有关问题的重要途径.(2)求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,只需一个条件就可以确定抛物线的标准方程.思维升华跟踪训练1 (1)设P是抛物线y24x上的一个动点,则点P到点A(1,1)的距离与点P到直线x1的距离之和的最小值为_.解析如图,易知抛物线的焦点为F(1,0),准线是x1,由抛物线的定义知点P到直线x1的距离等于点P到F的距离.于是,问题转化为在抛物线上求一点P,使点P到点A(1,1)的距离与点P到F(1,0)的距离之和最小,显然,连接AF与抛物线相交的点即为满足题意的点,(2)如图所示,过抛物线y22px(p0)的焦点F的直线交抛物线于点A,B,交其准线l于点C,若|BC|2|BF|,且|AF|3,则此抛物线的标准方程为题型二抛物线的几何性质例3(1)已知抛物线C:y22px(p0),过焦点F且斜率为 的直线与C相交于P,Q两点,且P,Q两点在准线上的射影分别为M,N两点,则SMFN等于师生共研师生共研(2)过点P(2,0)的直线与抛物线C:y24x相交于A,B两点,且|PA|AB|,则点A到抛物线C的焦点的距离为解析设A(x1,y1),B(x2,y2),分别过点A,B作直线x2的垂线,垂足分别为点D,E.在解决与抛物线的性质有关的问题时,要注意利用几何图形的形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此.思维升华跟踪训练2(1)设F为抛物线C:y23x的焦点,过F且倾斜角为30的直线交C于A,B两点,O为坐标原点,则OAB的面积为题型三直线与抛物线师生共研师生共研例4设抛物线的顶点在坐标原点,焦点F在y轴正半轴上,过点F的直线交抛物线于A,B两点,线段AB的长是8,AB的中点到x轴的距离是3.(1)求抛物线的标准方程;解设抛物线的方程是x22py(p0),A(x1,y1),B(x2,y2),由抛物线定义可知y1y2p8,又AB的中点到x轴的距离为3,y1y26,p2,抛物线的标准方程是x24y.(2)设直线m在y轴上的截距为6,且与抛物线交于P,Q两点.连接QF并延长交抛物线的准线于点R,当直线PR恰与抛物线相切时,求直线m的方程.(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点(设焦点在x轴的正半轴上),可直接使用公式|AB|x1x2p,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”、“整体代入”等解法.思维升华提醒:涉及弦的中点、斜率时一般用“点差法”求解.(4)设AB是过抛物线y22px(p0)焦点F的弦,若A(x1,y1),B(x2,y2),则以弦AB为直径的圆与准线相切.通径:过焦点垂直于对称轴的弦,长等于2p,通径是过焦点最短的弦.跟踪训练3(2018山西康杰中学月考)已知抛物线C:x22py(p0),圆O:x2y21.(1)若抛物线C的焦点F在圆O上,且A为抛物线C和圆O的一个交点,求|AF|;解由题意得F(0,1),从而抛物线C:x24y.(2)若直线l与抛物线C和圆O分别相切于点M,N,求|MN|的最小值及相应p的值.例(12分)已知抛物线C:ymx2(m0),焦点为F,直线2xy20交抛物线C于A,B两点,P是线段AB的中点,过P作x轴的垂线交抛物线C于点Q.(1)求抛物线C的焦点坐标;(2)若抛物线C上有一点R(xR,2)到焦点F的距离为3,求此时m的值;(3)是否存在实数m,使ABQ是以Q为直角顶点的直角三角形?若存在,求出m的值;若不存在,请说明理由.答题模板DATIMUBAN直线与圆锥曲线问题的求解策略3课时作业PART THREE基础保分练123456789101112131415161.抛物线yax2的准线方程是y1,则a的值为123456789101112131415162.(2018泰安诊断)设F为抛物线y22x的焦点,A,B,C为抛物线上三点,若F为ABC的重心,则 的值为A.1 B.2 C.3 D.4123456789101112131415163.(2018辽宁五校联考)抛物线x24y的焦点为F,过点F作斜率为 的直线l与抛物线在y轴右侧的部分相交于点A,过点A作抛物线准线的垂线,垂足为H,则AHF的面积是4.(2018江西上高二中、丰城中学联考)抛物线C:y22px(p0)的焦点为F,M是抛物线C上的点,若OFM的外接圆与抛物线C的准线相切,且该圆的面积为36,则p等于A.2 B.4 C.6 D.812345678910111213141516解析OFM的外接圆与抛物线C的准线相切,OFM的外接圆的圆心到准线的距离等于圆的半径.圆的面积为36,圆的半径为6.5.已知直线l:ykxk(kR)与抛物线C:y24x及其准线分别交于M,N两点,F为抛物线的焦点,若 ,则实数k等于123456789101112131415166.已知抛物线C的顶点是原点O,焦点F在x轴的正半轴上,经过点F的直线与抛物线C交于A,B两点,若 12,则抛物线C的方程为A.x28y B.x24y C.y28x D.y24x12345678910111213141516解析动点P到点A(0,2)的距离比它到直线l:y4的距离小2,动点P到点A(0,2)的距离与它到直线y2的距离相等.根据抛物线的定义可得点P的轨迹为以A(0,2)为焦点,以直线y2为准线的抛物线,其标准方程为x28y.7.(2018新余市第一中学模拟)动点P到点A(0,2)的距离比它到直线l:y4的距离小2,则动点P的轨迹方程为_.12345678910111213141516x28y123456789101112131415168.(2018武汉质检)已知F是抛物线y24x的焦点,A,B是抛物线上两点,若AFB是等边三角形,则AFB的边长为_.解析由题意可知点A,B一定关于x轴对称,且AF,BF与x轴夹角均为30,由于y24x的焦点为(1,0),123456789101112131415169.已知直线l:ykxt与圆:x2(y1)21相切,且与抛物线C:x24y交于不同的两点M,N,则实数t的取值范围是_.t0或t0,得t0或t0,得t0或t0或t0)的焦点,斜率为 的直线交抛物线于A(x1,y1),B(x2,y2)(x10,方程必有两个不等实根.所以p4,从而抛物线方程为y28x.12.(2018贵阳模拟)过抛物线C:y24x的焦点F且斜率为k的直线l交抛物线C于A,B两点,且|AB|8.(1)求l的方程;12345678910111213141516(2)若A关于x轴的对称点为D,求证:直线BD过定点,并求出该点的坐标.12345678910111213141516解由抛物线的对称性知,D点的坐标为(x1,y1),即y1y24(y1,y2异号),直线BD的方程为4(x1)(y1y2)y0,恒过点(1,0).技能提升练1234567891011121314151613.(2018益阳市、湘潭市质检)如图所示,过抛物线y22px(p0)的焦点F的直线交抛物线于点A,B,交其准线l于点C,若F是AC的中点,且|AF|4,则线段AB的长为14.(2018广东七校联考)如图所示,抛物线y x2,AB为过焦点F的弦,过A,B分别作抛物线的切线,两切线交于点M,设A(xA,yA),B(xB,yB),M(xM,yM),则:若AB的斜率为1,则|AB|4;|AB|min2;yM1;若AB的斜率为1,则xM1;xAxB4.以上结论正确的个数是A.1 B.2 C.3 D.412345678910111213141516拓展冲刺练12345678910111213141516151234567891011121314151616.设直线l与抛物线y24x相交于A,B两点,与圆(x5)2y2r2(r0)相切于点M,且M为线段AB的中点.若这样的直线l恰有4条,则r的取值范围是_.(2,4)9.7抛物线第九章平面解析几何

    注意事项

    本文(最新数学(理科)高三一轮复习系列《一轮复习讲义》61第九章 平面解析几何 9.7 抛物线58.pptx)为本站会员(邓**)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开