2023届山西省(太原临汾地区)重点名校中考押题数学预测卷含解析.doc
-
资源ID:87783341
资源大小:991KB
全文页数:16页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023届山西省(太原临汾地区)重点名校中考押题数学预测卷含解析.doc
2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:AB=BC,ABC=90°,AC=BD,ACBD中选两个作为补充条件,使ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是( )ABCD22017上半年,四川货物贸易进出口总值为2 098.7亿元,较去年同期增长59.5%,远高于同期全国19.6%的整体进出口增幅在“一带一路”倡议下,四川同期对以色列、埃及、罗马尼亚、伊拉克进出口均实现数倍增长将2098.7亿元用科学记数法表示是()A2.098 7×103B2.098 7×1010C2.098 7×1011D2.098 7×10123滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价1.8元/公里0.3元/分钟0.8元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收0.8元.小王与小张各自乘坐滴滴快车,行车里程分别为6公里与8.5公里,如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差( )A10分钟B13分钟C15分钟D19分钟4世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司将0.056用科学记数法表示为( )A5.6×101B5.6×102C5.6×103D0.56×10154的平方根是()A2B±2C8D±86(2011贵州安顺,4,3分)我市某一周的最高气温统计如下表:最高气温()25262728天 数1123则这组数据的中位数与众数分别是( )A27,28B27.5,28C28,27D26.5,277若函数与y=2x4的图象的交点坐标为(a,b),则的值是()A4B2C1D28如图所示的正方体的展开图是()ABCD9如图,正方形ABCD内接于圆O,AB4,则图中阴影部分的面积是( )ABCD10函数与在同一坐标系中的大致图象是( )A、 B、 C、 D、二、填空题(本大题共6个小题,每小题3分,共18分)11如果实数x、y满足方程组,求代数式(+2)÷12某排水管的截面如图,已知截面圆半径OB=10cm,水面宽AB是16cm,则截面水深CD为_13如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,tanAOC=,反比例函数y=的图象经过点C,与AB交于点D,若COD的面积为20,则k的值等于_.14若反比例函数的图象与一次函数y=ax+b的图象交于点A(2,m)、B(5,n),则3a+b的值等于_15如图,中,平分,与相交于点,则的长等于_.16已知反比例函数的图像经过点(-2017,2018),当时,函数值y随自变量x的值增大而_(填“增大”或“减小”)三、解答题(共8题,共72分)17(8分)在某校举办的 2012 年秋季运动会结束之后,学校需要为参加运动会的同学们发纪念品小王负责到某商场买某种纪念品,该商场规定:一次性购买该纪念品 200 个以上可以按折扣价出售;购买 200 个以下(包括 200 个)只能按原价出售小王若按照原计划的数量购买纪念品,只能按原价付款,共需要 1050 元;若多买 35 个,则按折扣价付款,恰好共需 1050 元设小王按原计划购买纪念品 x 个(1)求 x 的范围;(2)如果按原价购买 5 个纪念品与按打折价购买 6 个纪念品的钱数相同,那么小王原计划购买多少个纪念品?18(8分)如图,一根电线杆PQ直立在山坡上,从地面的点A看,测得杆顶端点P的仰角为45°,向前走6m到达点B,又测得杆顶端点P和杆底端点Q的仰角分别为60°和30°,求电线杆PQ的高度(结果保留根号).19(8分)某校诗词知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验,他们的10次成绩如下(单位:分):整理、分析过程如下,请补充完整(1)按如下分数段整理、描述这两组数据:成绩x学生70x7475x7980x8485x8990x9495x100甲_乙114211(2)两组数据的极差、平均数、中位数、众数、方差如下表所示:学生极差平均数中位数众数方差甲_83.7_8613.21乙2483.782_46.21(3)若从甲、乙两人中选择一人参加知识竞赛,你会选_(填“甲”或“乙),理由为_20(8分)如图,已知ABC中,AB=BC=5,tanABC=求边AC的长;设边BC的垂直平分线与边AB的交点为D,求的值21(8分)近年来,共享单车服务的推出(如图1),极大的方便了城市公民绿色出行,图2是某品牌某型号单车的车架新投放时的示意图(车轮半径约为30cm),其中BC直线l,BCE=71°,CE=54cm(1)求单车车座E到地面的高度;(结果精确到1cm)(2)根据经验,当车座E到CB的距离调整至等于人体胯高(腿长)的0.85时,坐骑比较舒适小明的胯高为70cm,现将车座E调整至座椅舒适高度位置E,求EE的长(结果精确到0.1cm)(参考数据:sin71°0.95,cos71°0.33,tan71°2.90)22(10分)计算:12+(3.14)0|1|23(12分)如今很多初中生购买饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:A:自带白开水;B:瓶装矿泉水;C:碳酸饮料;D:非碳酸饮料根据统计结果绘制如下两个统计图(如图),根据统计图提供的信息,解答下列问题:(1)请你补全条形统计图;(2)在扇形统计图中,求“碳酸饮料”所在的扇形的圆心角的度数;(3)为了养成良好的生活习惯,班主任决定在自带白开水的5名同学(男生2人,女生3人)中随机抽取2名同学担任生活监督员,请用列表法或树状图法求出恰好抽到一男一女的概率24如图,直线y=x+2与双曲线y=相交于点A(m,3),与x轴交于点C求双曲线的解析式;点P在x轴上,如果ACP的面积为3,求点P的坐标参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】A、四边形ABCD是平行四边形,当AB=BC时,平行四边形ABCD是菱形,当ABC=90°时,菱形ABCD是正方形,故此选项正确,不合题意;B、四边形ABCD是平行四边形,当ABC=90°时,平行四边形ABCD是矩形,当AC=BD时,这是矩形的性质,无法得出四边形ABCD是正方形,故此选项错误,符合题意;C、四边形ABCD是平行四边形,当AB=BC时,平行四边形ABCD是菱形,当AC=BD时,菱形ABCD是正方形,故此选项正确,不合题意;D、四边形ABCD是平行四边形,当ABC=90°时,平行四边形ABCD是矩形,当ACBD时,矩形ABCD是正方形,故此选项正确,不合题意故选C2、C【解析】将2098.7亿元用科学记数法表示是2.0987×1011,故选:C点睛: 本题考查了正整数指数科学计数法,对于一个绝对值较大的数,用科学记数法写成 的形式,其中,n是比原整数位数少1的数.3、D【解析】设小王的行车时间为x分钟,小张的行车时间为y分钟,根据计价规则计算出小王的车费和小张的车费,建立方程求解.【详解】设小王的行车时间为x分钟,小张的行车时间为y分钟,依题可得:1.8×6+0.3x=1.8×8.5+0.3y+0.8×(8.5-7),10.8+0.3x=16.5+0.3y,0.3(x-y)=5.7,x-y=19,故答案为D.【点睛】本题考查列方程解应用题,读懂表格中的计价规则是解题的关键.4、B【解析】0.056用科学记数法表示为:0.056=,故选B.5、B【解析】依据平方根的定义求解即可【详解】(±1)1=4,4的平方根是±1故选B【点睛】本题主要考查的是平方根的定义,掌握平方根的定义是解题的关键6、A【解析】根据表格可知:数据25出现1次,26出现1次,27出现2次,28出现3次,众数是28,这组数据从小到大排列为:25,26,27,27,28,28,28中位数是27这周最高气温的中位数与众数分别是27,28故选A.7、B【解析】求出两函数组成的方程组的解,即可得出a、b的值,再代入求值即可【详解】解方程组,把代入得:=2x4,整理得:x2+2x+1=0,解得:x=1,y=2,交点坐标是(1,2),a=1,b=2,=11=2,故选B【点睛】本题考查了一次函数与反比例函数的交点问题和解方程组等知识点,关键是求出a、b的值8、A【解析】有些立体图形是由一些平面图形围成的,将它们的表面适当的剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.根据立体图形表面的图形相对位置可以判断.【详解】把各个展开图折回立方体,根据三个特殊图案的相对位置关系,可知只有选项A正确.故选A【点睛】本题考核知识点:长方体表面展开图.解题关键点:把展开图折回立方体再观察.9、B【解析】连接OA、OB,利用正方形的性质得出OA=ABcos45°=2,根据阴影部分的面积=SO-S正方形ABCD列式计算可得【详解】解:连接OA、OB,四边形ABCD是正方形,AOB=90°,OAB=45°,OA=ABcos45°=4×=2,所以阴影部分的面积=SO-S正方形ABCD=×(2)2-4×4=8-1故选B【点睛】本题主要考查扇形的面积计算,解题的关键是熟练掌握正方形的性质和圆的面积公式10、D【解析】试题分析:根据一次函数和反比例函数的性质,分k0和k0两种情况讨论:当k0时,一次函数图象过二、四、三象限,反比例函数中,k0,图象分布在一、三象限;当k0时,一次函数过一、三、四象限,反比例函数中,k0,图象分布在二、四象限故选D考点:一次函数和反比例函数的图象二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】解:原式=xy+2x+2y,方程组:,解得:,当x=3,y=1时,原式=3+62=1故答案为1点睛:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键12、4cm【解析】由题意知ODAB,交AB于点C,由垂径定理可得出BC的长,在RtOBC中,根据勾股定理求出OC的长,由CD=OD-OC即可得出结论【详解】由题意知ODAB,交AB于点E,AB=16cm,BC=AB=×16=8cm,在RtOBE中,OB=10cm,BC=8cm,OC=(cm),CD=OD-OC=10-6=4(cm)故答案为4cm【点睛】本题考查的是垂径定理的应用,根据题意在直角三角形运用勾股定理列出方程是解答此题的关键13、24【解析】分析:如下图,过点C作CFAO于点F,过点D作DEOA交CO于点E,设CF=4x,由tanAOC=可得OF=3x,由此可得OC=5x,从而可得OA=5x,由已知条件易证S菱形ABCO=2SCOD=40=OA·CF=20x2,从而可得x=,由此可得点C的坐标为,这样由点C在反比例函数的图象上即可得到k=-24.详解:如下图,过点C作CFAO于点F,过点D作DEOA交CO于点E,设CF=4x,四边形ABCO是菱形,ABCO,AOBC,DEAO,四边形AOED和四边形DECB都是平行四边形,SAOD=SDOE,SBCD=SCDE,S菱形ABCD=2SDOE+2SCDE=2SCOD=40,tanAOC=,CF=4x,OF=3x,在RtCOF中,由勾股定理可得OC=5x,OA=OC=5x,S菱形ABCO=AO·CF=5x·4x=20x2=40,解得:x=,OF=,CF=,点C的坐标为,点C在反比例函数的图象上,k=.故答案为:-24.点睛:本题的解题要点有两点:(1)作出如图所示的辅助线,设CF=4x,结合已知条件把OF和OA用含x的式子表达出来;(2)由四边形AOCB是菱形,点D在AB上,SCOD=20得到S菱形ABCO=2SCOD=40.14、0【解析】分析:本题直接把点的坐标代入解析式求得之间的关系式,通过等量代换可得到的值详解:分别把A(2,m)、B(5,n),代入反比例函数的图象与一次函数y=ax+b得2m=5n,2a+b=m,5a+b=n,综合可知5(5a+b)=2(2a+b),25a+5b=4a2b,21a+7b=0,即3a+b=0.故答案为:0.点睛:属于一次函数和反比例函数的综合题,考查反比例函数与一次函数的交点问题,比较基础.15、3【解析】如图,延长CE、DE,分别交AB于G、H,由BAD=ADE=60°可得三角形ADH是等边三角形,根据等腰直角三角形的性质可知CGAB,可求出AG的长,进而可得GH的长,根据含30°角的直角三角形的性质可求出EH的长,根据DE=DH-EH即可得答案.【详解】如图,延长CE、DE,分别交AB于G、H,BAD=ADE=60°,ADH是等边三角形,DH=AD=AH=5,DHA=60°,AC=BC,CE平分ACB,ACB=90°,AB=8,AG=AB=4,CGAB,GH=AH=AG=5-4=1,DHA=60°,GEH=30°,EH=2GH=2DE=DH-EH=5=2=3.故答案为:3【点睛】本题考查等边三角形的判定及性质、等腰直角三角形的性质及含30°角的直角三角形的性质,熟记30°角所对的直角边等于斜边的一半的性质并正确作出辅助线是解题关键.16、增大【解析】根据题意,利用待定系数法解出系数的符号,再根据k值的正负确定函数值的增减性【详解】反比例函数的图像经过点(-2017,2018),k=-2017×2018<0,当x>0时,y随x的增大而增大.故答案为增大.三、解答题(共8题,共72分)17、(1)0x200,且 x是整数(2)175【解析】(1)根据商场的规定确定出x的范围即可;(2)设小王原计划购买x个纪念品,根据按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同列出分式方程,求出解即可得到结果【详解】(1)根据题意得:0x200,且x为整数;(2)设小王原计划购买x个纪念品,根据题意得:,整理得:5x+175=6x,解得:x=175,经检验x=175是分式方程的解,且满足题意,则小王原计划购买175个纪念品【点睛】此题考查了分式方程的应用,弄清题中的等量关系“按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同”是解本题的关键18、(6+)米【解析】根据已知的边和角,设CQ=x,BC=QC=x,PC=BC=3x,根据PQ=BQ列出方程求解即可.【详解】解:延长PQ交地面与点C,由题意可得:AB=6m,PCA=90°,PAC=45°,PBC=60°,QBC=30°,设CQ=x,则在RtBQC中,BC=QC=x,在RtPBC中PC=BC=3x,在RtPAC中,PAC=45°,则PC=AC,3x=6+x,解得x=3+,PQ=PC-CQ=3x-x=2x=6+,则电线杆PQ高为(6+)米【点睛】此题重点考察学生对解直角三角形的理解,掌握解直角三角形的方法是解题的关键.19、(1)0,1,4,5,0,0;(2)14,84.5,1;(3)甲,理由见解析【解析】(1)根据折线统计图数字进行填表即可; (2)根据稽查,中位数,众数的计算方法,求得甲成绩的极差,中位数,乙成绩的极差,众数即可;(3)可分别从平均数、方差、极差三方面进行比较【详解】(1)由图可知:甲的成绩为:75,84,89,82,86,1,86,83,85,86,70x74无,共0个;75x79之间有75,共1个;80x84之间有84,82,1,83,共4个;85x89之间有89,86,86,85,86,共5个;90x94之间和95x100无,共0个故答案为0;1;4;5;0;0;(2)由图可知:甲的最高分为89分,最低分为75分,极差为8975=14分;甲的成绩为从低到高排列为:75,1,82,83,84,85,86,86,86,89,中位数为(8485)84.5;乙的成绩为从低到高排列为:72,76,1,1,1,83,87,89,91,96,1出现3次,乙成绩的众数为1故答案为14;84.5;1;(3)甲,理由:两人的平均数相同且甲的方差小于乙,说明甲成绩稳定;两人的平均数相同且甲的极差小于乙,说明甲成绩变化范围小或:乙,理由:在90x100的分数段中,乙的次数大于甲(答案不唯一,理由须支撑推断结论)故答案为:甲,两人的平均数相同且甲的方差小于乙,说明甲成绩稳定【点睛】此题考查折线统计图,统计表,平均数,中位数,众数,方差,极差,解题关键在于掌握运算法则以及会用这些知识来评价这组数据20、(1)AC=;(2)【解析】【分析】(1)过A作AEBC,在直角三角形ABE中,利用锐角三角函数定义求出AC的长即可;(2)由DF垂直平分BC,求出BF的长,利用锐角三角函数定义求出DF的长,利用勾股定理求出BD的长,进而求出AD的长,即可求出所求【详解】(1)如图,过点A作AEBC,在RtABE中,tanABC=,AB=5,AE=3,BE=4,CE=BCBE=54=1,在RtAEC中,根据勾股定理得:AC=;(2)DF垂直平分BC,BD=CD,BF=CF=,tanDBF=,DF=,在RtBFD中,根据勾股定理得:BD=,AD=5=,则【点睛】本题考查了解直角三角形的应用,正确添加辅助线、根据边角关系熟练应用三角函数进行解答是解题的关键.21、(1)81cm;(2)8.6cm;【解析】(1)作EMBC于点M,由EM=ECsinBCE可得答案;(2)作EHBC于点H,先根据EC=求得EC的长度,再根据EE=CECE可得答案【详解】(1)如图1,过点E作EMBC于点M由题意知BCE=71°、EC=54,EM=ECsinBCE=54sin71°51.3,则单车车座E到地面的高度为51.3+3081cm;(2)如图2所示,过点E作EHBC于点H由题意知EH=70×0.85=59.5,则EC=62.6,EE=CECE=62.654=8.6(cm)【点睛】本题考查了解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答22、1.【解析】直接利用绝对值的性质以及零指数幂的性质和负指数幂的性质分别化简得出答案【详解】解:原式=1+41(1)=1+41+1=1【点睛】本题考查了实数的运算,零指数幂,负整数指数幂,解题的关键是掌握幂的运算法则.23、(1)详见解析;(2)72°;(3)【解析】(1)由B类型的人数及其百分比求得总人数,在用总人数减去其余各组人数得出C类型人数,即可补全条形图;(2)用360°乘以C类别人数所占比例即可得;(3)用列表法或画树状图法列出所有等可能结果,从中确定恰好抽到一男一女的结果数,根据概率公式求解可得【详解】解:(1) 抽 查的总人数为:(人) 类人数为:(人)补全条形统计图如下:(2)“碳酸饮料”所在的扇形的圆心角度数为:(3)设男生为、,女生为、,画树状图得:恰好抽到一男一女的情况共有12 种,分别是 (恰好抽到一男一女)【点睛】本题考查的是条形统计图和扇形统计图的综合运用以及概率的求法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小24、(1)(2)(-6,0)或(-2,0).【解析】分析:(1)把A点坐标代入直线解析式可求得m的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式; (2)设P(t,0),则可表示出PC的长,进一步表示出ACP的面积,可得到关于t的方程,则可求得P点坐标详解:(1)把A点坐标代入y=x+2,可得:3=m+2,解得:m=2,A(2,3)A点也在双曲线上,k=2×3=6,双曲线解析式为y=; (2)在y=x+2中,令y=0可求得:x=4,C(4,0)点P在x轴上,可设P点坐标为(t,0),CP=|t+4|,且A(2,3),SACP=×3|t+4|ACP的面积为3,×3|t+4|=3,解得:t=6或t=2,P点坐标为(6,0)或(2,0)点睛:本题主要考查函数图象的交点,掌握函数图象的交点坐标满足每个函数解析式是解题的关键