2023届广东省深圳市石岩公学重点中学中考数学最后冲刺浓缩精华卷含解析.doc
-
资源ID:87783649
资源大小:1,005.50KB
全文页数:21页
- 资源格式: DOC
下载积分:25金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023届广东省深圳市石岩公学重点中学中考数学最后冲刺浓缩精华卷含解析.doc
2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列图形中,是中心对称但不是轴对称图形的为()ABCD2如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A处,点B落在点B处,若2=40°,则图中1的度数为( )A115°B120°C130°D140°3的值为( )AB-C9D-94定义运算“”为:ab=,如:1(2)=1×(2)2=1则函数y=2x的图象大致是()ABCD5等腰三角形两边长分别是2 cm和5 cm,则这个三角形周长是( )A9 cm B12 cm C9 cm或12 cm D14 cm6下列计算正确的是ABC D7如图,直角边长为的等腰直角三角形与边长为3的等边三角形在同一水平线上,等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,设穿过时间为t,两图形重合部分的面积为S,则S关于t的图象大致为( )ABCD8一次函数满足,且随的增大而减小,则此函数的图象不经过( )A第一象限B第二象限C第三象限D第四象限9如图,在中, ,以边的中点为圆心,作半圆与相切,点分别是边和半圆上的动点,连接,则长的最大值与最小值的和是( )ABCD10要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请个队参赛,则满足的关系式为()ABCD11下列命题中,真命题是()A如果第一个圆上的点都在第二个圆的外部,那么这两个圆外离B如果一个点即在第一个圆上,又在第二个圆上,那么这两个圆外切C如果一条直线上的点到圆心的距离等于半径长,那么这条直线与这个圆相切D如果一条直线上的点都在一个圆的外部,那么这条直线与这个圆相离12一个正多边形的内角和为900°,那么从一点引对角线的条数是()A3B4C5D6二、填空题:(本大题共6个小题,每小题4分,共24分)13若一个正多边形的内角和是其外角和的3倍,则这个多边形的边数是_14已知边长为5的菱形中,对角线长为6,点在对角线上且,则的长为_15填在下列各图形中的三个数之间都有相同的规律,根据此规律,a的值是_16如图,已知,则_.17分解因式:3x2-6x+3=_18如图,在3×3的方格中,A、B、C、D、E、F分别位于格点上,从C、D、E、F四点中任取一点,与点A、B为顶点作三角形,则所作三角形为等腰三角形的概率是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元(1)该顾客至少可得到_元购物券,至多可得到_元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率20(6分)班级的课外活动,学生们都很积极.梁老师在某班对同学们进行了一次关于“我喜爱的体育项目”的调査,下面是他通过收集数据后,绘制的两幅不完整的统计图.请根据图中的信息,解答下列问题:调查了_名学生;补全条形统计图;在扇形统计图中,“乒乓球”部分所对应的圆心角度数为_;学校将举办运动会,该班将推选5位同学参加乒乓球比赛,有3位男同学和2位女同学,现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.21(6分)如图,海中有一个小岛 A,该岛四周 11 海里范围内有暗礁有一货轮在海面上由西向正东方向航行,到达B处时它在小岛南偏西60°的方向上,再往正东方向行驶10海里后恰好到达小岛南偏西45°方向上的点C处问:如果货轮继续向正东方向航行,是否会有触礁的危险?(参考数据:1.41,1.73)22(8分)如图,抛物线y=ax22ax+c(a0)与y轴交于点C(0,4),与x轴交于点A、B,点A坐标为(4,0)(1)求该抛物线的解析式;(2)抛物线的顶点为N,在x轴上找一点K,使CK+KN最小,并求出点K的坐标;(3)点Q是线段AB上的动点,过点Q作QEAC,交BC于点E,连接CQ当CQE的面积最大时,求点Q的坐标;(4)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0)问:是否存在这样的直线l,使得ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由23(8分)在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB2m,它的影子BC1.6m,木竿PQ落在地面上的影子PM1.8m,落在墙上的影子MN1.1m,求木竿PQ的长度24(10分)如图,在RtABC中,C90°,以BC为直径的O交AB于点D,过点D作O的切线DE交AC于点E(1)求证:AADE;(2)若AB25,DE10,弧DC的长为a,求DE、EC和弧DC围成的部分的面积S(用含字母a的式子表示)25(10分)如图,抛物线y=ax2+bx+c与x轴的交点分别为A(6,0)和点B(4,0),与y轴的交点为C(0,3)(1)求抛物线的解析式;(2)点P是线段OA上一动点(不与点A重合),过P作平行于y轴的直线与AC交于点Q,点D、M在线段AB上,点N在线段AC上是否同时存在点D和点P,使得APQ和CDO全等,若存在,求点D的坐标,若不存在,请说明理由;若DCB=CDB,CD是MN的垂直平分线,求点M的坐标26(12分)某兴趣小组进行活动,每个男生都头戴蓝色帽子,每个女生都头戴红色帽子帽子戴好后,每个男生都看见戴红色帽子的人数比戴蓝色帽子的人数的2倍少1,而每个女生都看见戴蓝色帽子的人数是戴红色帽子的人数的问该兴趣小组男生、女生各有多少人?27(12分)在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】试题分析:根据轴对称图形及中心对称图形的定义,结合所给图形进行判断即可A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选C考点:中心对称图形;轴对称图形2、A【解析】解:把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A处,点B落在点B处,BFE=EFB',B'=B=90°2=40°,CFB'=50°,1+EFB'CFB'=180°,即1+150°=180°,解得:1=115°,故选A3、A【解析】【分析】根据绝对值的意义进行求解即可得.【详解】表示的是的绝对值,数轴上表示的点到原点的距离是,即的绝对值是,所以的值为 ,故选A.【点睛】本题考查了绝对值的意义,熟练掌握绝对值的意义是解题的关键.4、C【解析】根据定义运算“” 为: ab=,可得y=2x的函数解析式,根据函数解析式,可得函数图象.【详解】解:y=2x=,当x>0时,图象是y=对称轴右侧的部分;当x0时,图象是y=对称轴左侧的部分,所以C选项是正确的.【点睛】本题考查了二次函数的图象,利用定义运算“”为: ab=得出分段函数是解题关键.5、B【解析】当腰长是2 cm时,因为2+2<5,不符合三角形的三边关系,排除;当腰长是5 cm时,因为5+5>2,符合三角形三边关系,此时周长是12 cm故选B6、B【解析】试题分析:根据合并同类项的法则,可知,故A不正确;根据同底数幂的除法,知,故B正确;根据幂的乘方,知,故C不正确;根据完全平方公式,知,故D不正确.故选B.点睛:此题主要考查了整式的混合运算,解题关键是灵活应用合并同类项法则,同底数幂的乘除法法则,幂的乘方,乘法公式进行计算.7、B【解析】先根据等腰直角三角形斜边为2,而等边三角形的边长为3,可得等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,出现等腰直角三角形完全处于等边三角形内部的情况,进而得到S关于t的图象的中间部分为水平的线段,再根据当t=0时,S=0,即可得到正确图象【详解】根据题意可得,等腰直角三角形斜边为2,斜边上的高为1,而等边三角形的边长为3,高为,故等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,出现等腰直角三角形完全处于等边三角形内部的情况,故两图形重合部分的面积先增大,然后不变,再减小,S关于t的图象的中间部分为水平的线段,故A,D选项错误;当t0时,S0,故C选项错误,B选项正确;故选:B【点睛】本题考查了动点问题的函数图像,根据重复部分面积的变化是解题的关键8、A【解析】试题分析:根据y随x的增大而减小得:k0,又kb0,则b0,故此函数的图象经过第二、三、四象限,即不经过第一象限故选A考点:一次函数图象与系数的关系9、C【解析】如图,设O与AC相切于点E,连接OE,作OP1BC垂足为P1交O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1-OQ1,求出OP1,如图当Q2在AB边上时,P2与B重合时,P2Q2最大值=5+3=8,由此不难解决问题【详解】解:如图,设O与AC相切于点E,连接OE,作OP1BC垂足为P1交O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1-OQ1,AB=10,AC=8,BC=6,AB2=AC2+BC2,C=10°,OP1B=10°,OP1ACAO=OB,P1C=P1B,OP1=AC=4,P1Q1最小值为OP1-OQ1=1,如图,当Q2在AB边上时,P2与B重合时,P2Q2经过圆心,经过圆心的弦最长,P2Q2最大值=5+3=8,PQ长的最大值与最小值的和是1故选:C【点睛】本题考查切线的性质、三角形中位线定理等知识,解题的关键是正确找到点PQ取得最大值、最小值时的位置,属于中考常考题型10、A【解析】根据应用题的题目条件建立方程即可.【详解】解:由题可得:即:故答案是:A.【点睛】本题主要考察一元二次方程的应用题,正确理解题意是解题的关键.11、D【解析】根据两圆的位置关系、直线和圆的位置关系判断即可【详解】A.如果第一个圆上的点都在第二个圆的外部,那么这两个圆外离或内含,A是假命题;B.如果一个点即在第一个圆上,又在第二个圆上,那么这两个圆外切或内切或相交,B是假命题;C.如果一条直线上的点到圆心的距离等于半径长,那么这条直线与这个圆相切或相交,C是假命题;D.如果一条直线上的点都在一个圆的外部,那么这条直线与这个圆相离,D是真命题; 故选:D【点睛】本题考查了两圆的位置关系:设两圆半径分别为R、r,两圆圆心距为d,则当dR+r时两圆外离;当d=R+r时两圆外切;当R-rdR+r(Rr)时两圆相交;当d=R-r(Rr)时两圆内切;当0dR-r(Rr)时两圆内含12、B【解析】n边形的内角和可以表示成(n-2)180°,设这个多边形的边数是n,就得到关于边数的方程,从而求出边数,再求从一点引对角线的条数.【详解】设这个正多边形的边数是n,则(n-2)180°=900°,解得:n=1则这个正多边形是正七边形所以,从一点引对角线的条数是:1-3=4.故选B【点睛】本题考核知识点:多边形的内角和.解题关键点:熟记多边形内角和公式.二、填空题:(本大题共6个小题,每小题4分,共24分)13、8【解析】解:设边数为n,由题意得,180(n-2)=3603解得n=8.所以这个多边形的边数是8.14、3或1【解析】菱形ABCD中,边长为1,对角线AC长为6,由菱形的性质及勾股定理可得ACBD,BO=4,分当点E在对角线交点左侧时(如图1)和当点E在对角线交点左侧时(如图2)两种情况求BE得长即可【详解】解:当点E在对角线交点左侧时,如图1所示:菱形ABCD中,边长为1,对角线AC长为6,ACBD,BO= =4,tanEAC=,解得:OE=1,BE=BOOE=41=3,当点E在对角线交点左侧时,如图2所示:菱形ABCD中,边长为1,对角线AC长为6,ACBD,BO=4,tanEAC=,解得:OE=1,BE=BOOE=4+1=1,故答案为3或1【点睛】本题主要考查了菱形的性质,解决问题时要注意分当点E在对角线交点左侧时和当点E在对角线交点左侧时两种情况求BE得长15、1【解析】寻找规律:上面是1,2 ,3,4,;左下是1,4=22,9=32,16=42,;右下是:从第二个图形开始,左下数字减上面数字差的平方:(42)2,(93)2,(164)2,a=(366)2=116、65°【解析】根据两直线平行,同旁内角互补求出3,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】mn,1=105°,3=180°1=180°105°=75°=23=140°75°=65°故答案为:65°.【点睛】此题考查平行线的性质,解题关键在于利用同旁内角互补求出3.17、3(x-1)2【解析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解【详解】.故答案是:3(x-1)2.【点睛】考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止18、【解析】解:根据从C、D、E、F四个点中任意取一点,一共有4种可能,选取D、C、F时,所作三角形是等腰三角形,故P(所作三角形是等腰三角形)=;故答案为【点睛】本题考查概率的计算及等腰三角形的判定,熟记等要三角形的性质及判定方法和概率的计算公式是本题的解题关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、解:(1)10,50;(2)解法一(树状图):从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)= ;解法二(列表法):(以下过程同“解法一”)【解析】试题分析:(1)由在一个不透明的箱子里放有4个相同的小球,球上分别标有“0”元,“10”元,“20”元和“30”元的字样,规定:顾客在本商场同一日内,每消费满200元,就可以再箱子里先后摸出两个球(第一次摸出后不放回)即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与顾客所获得购物券的金额不低于30元的情况,再利用概率公式求解即可求得答案试题解析:(1)10,50;(2)解法一(树状图):,从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元);解法二(列表法):01020300102030101030402020305030304050从上表可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元);考点:列表法与树状图法.【详解】请在此输入详解!20、50 见解析(3)115.2° (4) 【解析】试题分析:(1)用最喜欢篮球的人数除以它所占的百分比可得总共的学生数;(2)用学生的总人数乘以各部分所占的百分比,可得最喜欢足球的人数和其他的人数,即可把条形统计图补充完整;(3)根据圆心角的度数=360 º×它所占的百分比计算;(4)列出树状图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,从而可求出答案.解:(1)由题意可知该班的总人数=15÷30%=50(名)故答案为50;(2)足球项目所占的人数=50×18%=9(名),所以其它项目所占人数=5015916=10(名)补全条形统计图如图所示:(3)“乒乓球”部分所对应的圆心角度数=360°×=115.2°,故答案为115.2°;(4)画树状图如图由图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,所以P(恰好选出一男一女)=点睛:本题考查的是条形统计图和扇形统计图的综合运用,概率的计算.读懂统计图,从不同的统计图中得到必要的信息及掌握概率的计算方法是解决问题的关键.21、不会有触礁的危险,理由见解析. 【解析】分析:作AHBC,由CAH=45°,可设AH=CH=x,根据可得关于x的方程,解之可得详解:过点A作AHBC,垂足为点H 由题意,得BAH=60°,CAH=45°,BC=1 设AH=x,则CH=x 在RtABH中,解得:13.6511,货轮继续向正东方向航行,不会有触礁的危险点睛:本题考查了解直角三角形的应用方向角问题,解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线22、(1)y=;(1)点K的坐标为(,0);(2)点P的坐标为:(1+,1)或(1,1)或(1+,2)或(1,2)【解析】试题分析:(1)把A、C两点坐标代入抛物线解析式可求得a、c的值,可求得抛物线解析;(1)可求得点C关于x轴的对称点C的坐标,连接CN交x轴于点K,再求得直线CK的解析式,可求得K点坐标;(2)过点E作EGx轴于点G,设Q(m,0),可表示出AB、BQ,再证明BQEBAC,可表示出EG,可得出CQE关于m的解析式,再根据二次函数的性质可求得Q点的坐标;(4)分DO=DF、FO=FD和OD=OF三种情况,分别根据等腰三角形的性质求得F点的坐标,进一步求得P点坐标即可试题解析:(1)抛物线经过点C(0,4),A(4,0),解得 ,抛物线解析式为y= x1+x+4;(1)由(1)可求得抛物线顶点为N(1, ),如图1,作点C关于x轴的对称点C(0,4),连接CN交x轴于点K,则K点即为所求,设直线CN的解析式为y=kx+b,把C、N点坐标代入可得 ,解得 ,直线CN的解析式为y=x-4 ,令y=0,解得x= ,点K的坐标为(,0);(2)设点Q(m,0),过点E作EGx轴于点G,如图1,由 x1+x+4=0,得x1=1,x1=4,点B的坐标为(1,0),AB=6,BQ=m+1,又QEAC,BQEBAC, ,即 ,解得EG= ;SCQE=SCBQSEBQ=(CO-EG)·BQ=(m+1)(4-)= =-(m-1)1+2 又1m4,当m=1时,SCQE有最大值2,此时Q(1,0);(4)存在在ODF中,()若DO=DF,A(4,0),D(1,0),AD=OD=DF=1又在RtAOC中,OA=OC=4,OAC=45°DFA=OAC=45°ADF=90°此时,点F的坐标为(1,1)由 x1+x+4=1,得x1=1+ ,x1=1此时,点P的坐标为:P1(1+,1)或P1(1,1);()若FO=FD,过点F作FMx轴于点M由等腰三角形的性质得:OM=OD=1,AM=2在等腰直角AMF中,MF=AM=2F(1,2)由 x1+x+4=2,得x1=1+,x1=1此时,点P的坐标为:P2(1+,2)或P4(1,2);()若OD=OF,OA=OC=4,且AOC=90°AC=4点O到AC的距离为1而OF=OD=11,与OF1矛盾在AC上不存在点使得OF=OD=1此时,不存在这样的直线l,使得ODF是等腰三角形综上所述,存在这样的直线l,使得ODF是等腰三角形所求点P的坐标为:(1+,1)或(1,1)或(1+,2)或(1,2)点睛:本题是二次函数综合题,主要考查待定系数法、三角形全等的判定与性质、等腰三角形的性质等,能正确地利用数形结合思想、分类讨论思想等进行解题是关键.23、木竿PQ的长度为3.35米【解析】过N点作NDPQ于D,则四边形DPMN为矩形,根据矩形的性质 得出DP,DN的长,然后根据同一时刻物高与影长成正比求出QD的长,即可得出PQ的长试题解析:【详解】解:过N点作NDPQ于D,则四边形DPMN为矩形,DNPM1.8m,DPMN1.1m,QD2.25,PQQDDP 2.251.13.35(m)答:木竿PQ的长度为3.35米【点睛】本题考查了相似三角形的应用,作出辅助线,根据同一时刻物高与影长成正比列出比例式是解决此题的关键24、(1)见解析;(2)75a.【解析】(1)连接CD,求出ADC=90°,根据切线长定理求出DE=EC,即可求出答案;(2)连接CD、OD、OE,求出扇形DOC的面积,分别求出ODE和OCE的面积,即可求出答案【详解】(1)证明:连接DC,BC是O直径,BDC=90°,ADC=90°,C=90°,BC为直径,AC切O于C,过点D作O的切线DE交AC于点E,DE=CE,EDC=ECD,ACB=ADC=90°,A+ACD=90°,ADE+EDC=90°,A=ADE;(2)解:连接CD、OD、OE,DE=10,DE=CE,CE=10,A=ADE,AE=DE=10,AC=20,ACB=90°,AB=25,由勾股定理得:BC=15,CO=OD=,的长度是a,扇形DOC的面积是×a×=a,DE、EC和弧DC围成的部分的面积S=××10+×10a=75a【点睛】本题考查了圆周角定理,切线的性质,切线长定理,等腰三角形的性质和判定,勾股定理,扇形的面积,三角形的面积等知识点,能综合运用知识点进行推理和计算是解此题的关键25、(1)y=x2x+3;(2)点D坐标为(,0);点M(,0).【解析】(1)应用待定系数法问题可解;(2)通过分类讨论研究APQ和CDO全等由已知求点D坐标,证明DNBC,从而得到DN为中线,问题可解【详解】(1)将点(-6,0),C(0,3),B(4,0)代入y=ax2+bx+c,得,解得: ,抛物线解析式为:y=-x2-x+3;(2)存在点D,使得APQ和CDO全等,当D在线段OA上,QAP=DCO,AP=OC=3时,APQ和CDO全等,tanQAP=tanDCO,OD=,点D坐标为(-,0).由对称性,当点D坐标为(,0)时,由点B坐标为(4,0),此时点D(,0)在线段OB上满足条件OC=3,OB=4,BC=5,DCB=CDB,BD=BC=5,OD=BD-OB=1,则点D坐标为(-1,0)且AD=BD=5,连DN,CM,则DN=DM,NDC=MDC,NDC=DCB,DNBC,则点N为AC中点DN时ABC的中位线,DN=DM=BC=,OM=DM-OD=点M(,0)【点睛】本题是二次函数综合题,考查了二次函数待定系数法、三角形全等的判定、锐角三角形函数的相关知识解答时,注意数形结合26、男生有12人,女生有21人.【解析】设该兴趣小组男生有x人,女生有y人,然后再根据:(男生的人数-1)×2-1=女生的人数,(女生的人数-1) ×=男生的人数 ,列出方程组,再进行求解即可.【详解】设该兴趣小组男生有x人,女生有y人,依题意得:,解得:答:该兴趣小组男生有12人,女生有21人【点睛】本题主要考查了二元一次方程组的应用,解题的关键是明确题中各个量之间的关系,并找出等量关系列出方程组.27、【解析】试题分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲、乙抽中同一篇文章,再利用概率公式求解即可求得答案试题解析:解:如图:所有可能的结果有9种,甲、乙抽中同一篇文章的情况有3种,概率为=点睛:本题主要考查了用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件注意概率=所求情况数与总情况数之比