2023届江苏省兴化市中考数学五模试卷含解析.doc
-
资源ID:87784248
资源大小:834KB
全文页数:17页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023届江苏省兴化市中考数学五模试卷含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列各式中计算正确的是ABCD2观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为()A23B75C77D1393如图,已知ABCD中,E是边AD的中点,BE交对角线AC于点F,那么SAFE:S四边形FCDE为( )A1:3B1:4C1:5D1:64如图是一块带有圆形空洞和矩形空洞的小木板,则下列物体中最有可能既可以堵住圆形空洞,又可以堵住矩形空洞的是( )A正方体B球C圆锥D圆柱体5一元二次方程(x+2017)21的解为( )A2016,2018B2016C2018D20176关于的一元二次方程有两个不相等的实数根,则实数的取值范围是ABCD7已知二次函数y=ax2+bx+c(a1)的图象如图所示,则下列结论:a、b同号;当x=1和x=3时,函数值相等;4a+b=1;当y=2时,x的值只能取1;当1x5时,y1其中,正确的有()A2个B3个C4个D5个8已知实数a、b满足,则ABCD9已知:如图,在平面直角坐标系xOy中,等边AOB的边长为6,点C在边OA上,点D在边AB上,且OC3BD,反比例函数y(k0)的图象恰好经过点C和点D,则k的值为()ABCD10九章算术是中国传统数学的重要著作,方程术是它的最高成就其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,以下列出的方程组正确的是( )ABCD11如图,在射线AB上顺次取两点C,D,使AC=CD=1,以CD为边作矩形CDEF,DE=2,将射线AB绕点A沿逆时针方向旋转,旋转角记为(其中0°45°),旋转后记作射线AB,射线AB分别交矩形CDEF的边CF,DE于点G,H若CG=x,EH=y,则下列函数图象中,能反映y与x之间关系的是()ABCD12在ABC中,C90°,tanA,ABC的周长为60,那么ABC的面积为()A60B30C240D120二、填空题:(本大题共6个小题,每小题4分,共24分)13九(5)班有男生27人,女生23人,班主任发放准考证时,任意抽取一张准考证,恰好是女生的准考证的概率是_14计算:6=_15如图,已知反比例函数y=(k为常数,k0)的图象经过点A,过A点作ABx轴,垂足为B,若AOB的面积为1,则k=_16化简:a+1+a(a+1)+a(a+1)2+a(a+1)99=_17如图,正方形ABCD的边长为2,分别以A、D为圆心,2为半径画弧BD、AC,则图中阴影部分的面积为_18如图,在正五边形ABCDE中,AC与BE相交于点F,则AFE的度数为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图1,图2分别是某款篮球架的实物图与示意图,已知底座BC=1.5米,底座BC与支架AC所成的角ACB=60°,支架AF的长为2.50米,篮板顶端F点到篮筐D的距离FD=1.3米,篮板底部支架HE与支架AF所成的角FHE=45°,求篮筐D到地面的距离(精确到0.01米参考数据:1.73,1.41)20(6分)如图是一副扑克牌中的四张牌,将它们正面向下冼均匀,从中任意抽取两张牌,用画树状图(或列表)的方法,求抽出的两张牌牌面上的数字之和都是偶数的概率21(6分)如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上.(1)给出以下条件;OBOD,12,OEOF,请你从中选取两个条件证明BEODFO;(2)在(1)条件中你所选条件的前提下,添加AECF,求证:四边形ABCD是平行四边形22(8分)如图,在一个平台远处有一座古塔,小明在平台底部的点C处测得古塔顶部B的仰角为60°,在平台上的点E处测得古塔顶部的仰角为30°已知平台的纵截面为矩形DCFE,DE2米,DC20米,求古塔AB的高(结果保留根号)23(8分)(1)2018+()124(10分)已知点E是矩形ABCD的边CD上一点,BFAE于点F,求证ABFEAD.25(10分)如图,一次函数y=k1x+b(k10)与反比例函数的图象交于点A(-1,2),B(m,-1)(1)求一次函数与反比例函数的解析式;(2)在x轴上是否存在点P(n,0),使ABP为等腰三角形,请你直接写出P点的坐标26(12分)某校航模小组借助无人飞机航拍校园,如图,无人飞机从A处水平飞行至B处需10秒,A在地面C的北偏东12°方向,B在地面C的北偏东57°方向已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度(结果精确到0.1米,参考数据:sin33°0.54,cos33°0.84,tan33°0.65)27(12分) 已知AC,EC分别是四边形ABCD和EFCG的对角线,直线AE与直线BF交于点H(1)观察猜想如图1,当四边形ABCD和EFCG均为正方形时,线段AE和BF的数量关系是 ;AHB (2)探究证明如图2,当四边形ABCD和FFCG均为矩形,且ACBECF30°时,(1)中的结论是否仍然成立,并说明理由(3)拓展延伸在(2)的条件下,若BC9,FC6,将矩形EFCG绕点C旋转,在整个旋转过程中,当A、E、F三点共线时,请直接写出点B到直线AE的距离参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】根据完全平方公式对A进行判断;根据幂的乘方与积的乘方对B、C进行判断;根据合并同类项对D进行判断【详解】A. ,故错误. B. ,正确.C. ,故错误.D. , 故错误.故选B.【点睛】考查完全平方公式,合并同类项,幂的乘方与积的乘方,熟练掌握它们的运算法则是解题的关键.2、B【解析】由图可知:上边的数与左边的数的和正好等于右边的数,上边的数为连续的奇数,左边的数为21,22,23,26,由此可得a,b【详解】上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,b=26=1上边的数与左边的数的和正好等于右边的数,a=11+1=2故选B【点睛】本题考查了数字变化规律,观察出上边的数与左边的数的和正好等于右边的数是解题的关键3、C【解析】根据AEBC,E为AD中点,找到AF与FC的比,则可知AEF面积与FCE面积的比,同时因为DEC面积=AEC面积,则可知四边形FCDE面积与AEF面积之间的关系【详解】解:连接CE,AEBC,E为AD中点, FEC面积是AEF面积的2倍设AEF面积为x,则AEC面积为3x,E为AD中点,DEC面积=AEC面积=3x四边形FCDE面积为1x,所以SAFE:S四边形FCDE为1:1故选:C【点睛】本题考查相似三角形的判定和性质、平行四边形的性质,解题关键是通过线段的比得到三角形面积的关系4、D【解析】本题中,圆柱的俯视图是个圆,可以堵住圆形空洞,它的正视图和左视图是个矩形,可以堵住方形空洞【详解】根据三视图的知识来解答圆柱的俯视图是一个圆,可以堵住圆形空洞,而它的正视图以及侧视图都为一个矩形,可以堵住方形的空洞,故圆柱是最佳选项故选D【点睛】此题考查立体图形,本题将立体图形的三视图运用到了实际中,只要弄清楚了立体图形的三视图,解决这类问题其实并不难5、A【解析】利用直接开平方法解方程【详解】(x+2017)2=1x+2017=±1,所以x1=-2018,x2=-1故选A【点睛】本题考查了解一元二次方程-直接开平方法:形如x2=p或(nx+m)2=p(p0)的一元二次方程可采用直接开平方的方法解一元二次方程6、A【解析】根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可【详解】关于x的一元二次方程x23x+m=0有两个不相等的实数根,=b24ac=(3)24×1×m0,m,故选A【点睛】本题考查了根的判别式,解题的关键在于熟练掌握一元二次方程根的情况与判别式的关系,即:(1)0方程有两个不相等的实数根;(2)=0方程有两个相等的实数根;(3)0方程没有实数根7、A【解析】根据二次函数的性质和图象可以判断题目中各个小题是否成立【详解】由函数图象可得,a1,b1,即a、b异号,故错误,x=-1和x=5时,函数值相等,故错误,-2,得4a+b=1,故正确,由图象可得,当y=-2时,x=1或x=4,故错误,由图象可得,当-1x5时,y1,故正确,故选A【点睛】考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答8、C【解析】根据不等式的性质进行判断【详解】解:A、,但不一定成立,例如:,故本选项错误;B、,但不一定成立,例如:,故本选项错误;C、时,成立,故本选项正确;D、时,成立,则不一定成立,故本选项错误;故选C【点睛】考查了不等式的性质要认真弄清不等式的基本性质与等式的基本性质的异同,特别是在不等式两边同乘以或除以同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变9、A【解析】试题分析:过点C作CEx轴于点E,过点D作DFx轴于点F,如图所示设BD=a,则OC=3aAOB为边长为1的等边三角形,COE=DBF=10°,OB=1在RtCOE中,COE=10°,CEO=90°,OC=3a,OCE=30°,OE=a,CE= = a,点C(a, a)同理,可求出点D的坐标为(1a,a)反比例函数(k0)的图象恰好经过点C和点D,k=a×a=(1a)×a,a=,k=故选A10、C【解析】【分析】分析题意,根据“每人出8钱,会多3钱;每人出7钱,又会差4钱,”可分别列出方程.【详解】设合伙人数为x人,物价为y钱,根据题意得故选C【点睛】本题考核知识点:列方程组解应用题.解题关键点:找出相等关系,列出方程.11、D【解析】四边形CDEF是矩形,CFDE,ACGADH,AC=CD=1,AD=2,DH=2x,DE=2,y=22x,0°45°,0x1,故选D【点睛】本题主要考查了旋转、相似等知识,解题的关键是根据已知得出ACGADH.12、D【解析】由tanA的值,利用锐角三角函数定义设出BC与AC,进而利用勾股定理表示出AB,由周长为60求出x的值,确定出两直角边,即可求出三角形面积【详解】如图所示,由tanA,设BC12x,AC5x,根据勾股定理得:AB13x,由题意得:12x+5x+13x60,解得:x2,BC24,AC10,则ABC面积为120,故选D【点睛】此题考查了解直角三角形,锐角三角函数定义,以及勾股定理,熟练掌握勾股定理是解本题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】用女生人数除以总人数即可.【详解】由题意得,恰好是女生的准考证的概率是.故答案为:.【点睛】此题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=14、3【解析】按照二次根式的运算法则进行运算即可.【详解】【点睛】本题考查的知识点是二次根式的运算,解题关键是注意化简算式.15、-1【解析】试题解析:设点A的坐标为(m,n),因为点A在y=的图象上,所以,有mnk,ABO的面积为1,=1,=1,k=±1,由函数图象位于第二、四象限知k<0,k=-1考点:反比例外函数k的几何意义.16、(a+1)1【解析】原式提取公因式,计算即可得到结果【详解】原式=(a+1)1+a+a(a+1)+a(a+1)2+a(a+1)98,=(a+1)21+a+a(a+1)+a(a+1)2+a(a+1)97,=(a+1)31+a+a(a+1)+a(a+1)2+a(a+1)96,=,=(a+1)1故答案是:(a+1)1【点睛】考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键17、2【解析】过点F作FEAD于点E,则AE=AD=AF,故AFE=BAF=30°,再根据勾股定理求出EF的长,由S弓形AF=S扇形ADFSADF可得出其面积,再根据S阴影=2(S扇形BAFS弓形AF)即可得出结论【详解】如图所示,过点F作FEAD于点E,正方形ABCD的边长为2,AE=AD=AF=1,AFE=BAF=30°,EF=S弓形AF=S扇形ADFSADF=, S阴影=2(S扇形BAFS弓形AF)=2×=2×()=【点睛】本题考查了扇形的面积公式和长方形性质的应用,关键是根据图形的对称性分析,主要考查学生的计算能力18、72°【解析】首先根据正五边形的性质得到AB=BC=AE,ABC=BAE=108°,然后利用三角形内角和定理得BAC=BCA=ABE=AEB=(180°108°)÷2=36°,最后利用三角形的外角的性质得到AFE=BAC+ABE=72°【详解】五边形ABCDE为正五边形,AB=BC=AE,ABC=BAE=108°,BAC=BCA=ABE=AEB=(180°108°)÷2=36°,AFE=BAC+ABE=72°,故答案为72°【点睛】本题考查的是正多边形和圆,利用数形结合求解是解答此题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、3.05米【解析】延长FE交CB的延长线于M, 过A作AGFM于G, 解直角三角形即可得到正确结论【详解】解:如图:延长FE交CB的延长线于M,过A作AGFM于G,在RtABC中,tanACB=,AB=BCtan60°=1.5×1.73=2.595,GM=AB=2.595,在RtAGF中,FAG=FHE=45°,sinFAG=,sin45°=,FG=1.76,DM=FG+GMDF3.05米答:篮框D到地面的距离是3.05米【点睛】本题主要考查直角三角形和三角函数,构造合适的辅助线是本题解题的关键20、【解析】根据列表法先画出列表,再求概率.【详解】解:列表如下:23562(2,3)(2,5)(2,6)3(3,2)(3,5)(3,6)5(5,2)(5,3)(5,6)6(6,2)(6,3)(6,5)由表可知共有12种等可能结果,其中数字之和为偶数的有4种,所以P(数字之和都是偶数)【点睛】此题重点考查学生对概率的应用,掌握列表法是解题的关键.21、(1)见解析;(2)见解析.【解析】试题分析:(1)选取,利用ASA判定BEODFO;也可选取,利用AAS判定BEODFO;还可选取,利用SAS判定BEODFO;(2)根据BEODFO可得EOFO,BODO,再根据等式的性质可得AOCO,根据两条对角线互相平分的四边形是平行四边形可得结论试题解析:证明:(1)选取,在BEO和DFO中,BEODFO(ASA);(2)由(1)得:BEODFO,EOFO,BODO,AECF,AOCO,四边形ABCD是平行四边形点睛:此题主要考查了平行四边形的判定,以及全等三角形的判定,关键是掌握两条对角线互相平分的四边形是平行四边形22、古塔AB的高为(10+2)米【解析】试题分析:延长EF交AB于点G利用AB表示出EG,AC让EG-AC=1即可求得AB长试题解析:如图,延长EF交AB于点G设AB=x米,则BG=AB2=(x2)米则EG=(AB2)÷tanBEG=(x2),CA=AB÷tanACB=x则CD=EGAC=(x2)x=1解可得:x=10+2答:古塔AB的高为(10+2)米23、-1.【解析】直接利用负指数幂的性质以及算术平方根的性质分别化简得出答案【详解】原式=1+13=1【点睛】本题主要考查了实数运算,正确化简各数是解题的关键24、证明见解析【解析】试题分析:先利用等角的余角相等得到根据有两组角对应相等,即可证明两三角形相似.试题解析:四边形为矩形,于点F,点睛:两组角对应相等,两三角形相似.25、(1)反比例函数的解析式为;一次函数的解析式为y=-x+1;(2)满足条件的P点的坐标为(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0)【解析】(1)将A点代入求出k2,从而求出反比例函数方程,再联立将B点代入即可求出一次函数方程.(2)令PA=PB,求出P.令AP=AB,求P.令BP=BA,求P.根据坐标距离公式计算即可.【详解】(1)把A(-1,2)代入,得到k2=-2,反比例函数的解析式为B(m,-1)在上,m=2,由题意,解得:,一次函数的解析式为y=-x+1(2)满足条件的P点的坐标为(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0)【点睛】本题考查一次函数图像与性质和反比例函数的图像和性质,解题的关键是待定系数法,分三种情况讨论.26、29.8米【解析】作,根据题意确定出与的度数,利用锐角三角函数定义求出与的长度,由求出的长度,即可求出的长度【详解】解:如图,作,由题意得:米,米,则米,答:这架无人飞机的飞行高度为米【点睛】此题考查了解直角三角形的应用仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键27、(1),45°;(2)不成立,理由见解析;(3) .【解析】(1)由正方形的性质,可得 ,ACBGEC45°,求得CAECBF,由相似三角形的性质得到,CAB45°,又因为CBA90°,所以AHB45°.(2)由矩形的性质,及ACBECF30°,得到CAECBF,由相似三角形的性质可得CAECBF,,则CAB60°,又因为CBA90°,求得AHB30°,故不成立.(3)分两种情况讨论:作BMAE于M,因为A、E、F三点共线,及AFB30°,AFC90°,进而求得AC和EF ,根据勾股定理求得AF,则AEAFEF,再由(2)得: ,所以BF33,故BM .如图3所示:作BMAE于M,由A、E、F三点共线,得:AE6+2,BF3+3,则BM.【详解】解:(1)如图1所示:四边形ABCD和EFCG均为正方形, ,ACBGEC45°, ACEBCF,CAECBF,CAECBF,CABCAE+EABCBF+EAB45°,CBA90°,AHB180°90°45°45°,故答案为,45°; (2)不成立;理由如下:四边形ABCD和EFCG均为矩形,且ACBECF30°,ACEBCF,CAECBF,CAECBF,,CABCAE+EABCBF+EAB60°,CBA90°,AHB180°90°60°30°;(3)分两种情况:如图2所示:作BMAE于M,当A、E、F三点共线时,由(2)得:AFB30°,AFC90°,在RtABC和RtCEF中,ACBECF30°,AC,EFCF×tan30°6× 2 ,在RtACF中,AF ,AEAFEF6 2,由(2)得: ,BF (62)33,在BFM中,AFB30°,BMBF ;如图3所示:作BMAE于M,当A、E、F三点共线时,同(2)得:AE6+2,BF3+3,则BMBF;综上所述,当A、E、F三点共线时,点B到直线AE的距离为 【点睛】本题考察正方形的性质和矩形的性质以及三点共线,熟练掌握正方形的性质和矩形的性质,知道分类讨论三点共线问题是解题的关键.本题属于中等偏难.