2023届广东省深圳市龙岗区德琳校中考数学模拟预测题含解析.doc
-
资源ID:87784260
资源大小:783.50KB
全文页数:18页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023届广东省深圳市龙岗区德琳校中考数学模拟预测题含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1方程的解为()Ax=1Bx=1Cx=2Dx=32在平面直角坐标系中,函数的图象经过( )A第一、二、三象限B第一、二、四象限C第一、三、四象限D第二、三、四象限3关于x的方程=无解,则k的值为()A0或B1C2D34如图,已知ABC,ABAC,将ABC沿边BC翻转,得到的DBC与原ABC拼成四边形ABDC,则能直接判定四边形ABDC是菱形的依据是( )A四条边相等的四边形是菱形B一组邻边相等的平行四边形是菱形C对角线互相垂直的平行四边形是菱形D对角线互相垂直平分的四边形是菱形5制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A360元B720元C1080元D2160元6某种微生物半径约为0.00000637米,该数字用科学记数法可表示为()A0.637×105 B6.37×106 C63.7×107 D6.37×1077据关于“十三五”期间全面深入推进教育信息化工作的指导意见显示,全国6000万名师生已通过“网络学习空间”探索网络条件下的新型教学、学习与教研模式,教育公共服务平台基本覆盖全国学生、教职工等信息基础数据库,实施全国中小学教师信息技术应用能力提升工程则数字6000万用科学记数法表示为()A6×105B6×106C6×107D6×1088如图,将函数y(x2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()Ay(x2)2-2By(x2)2+7Cy(x2)2-5Dy(x2)2+49已知x1,x2是关于x的方程x2ax2b0的两个实数根,且x1x22,x1·x21,则ba的值是( )ABC4D110已知关于x的一元二次方程有两个相等的实根,则k的值为( )ABC2或3D或二、填空题(本大题共6个小题,每小题3分,共18分)11在一次摸球实验中,摸球箱内放有白色、黄色乒乓球共50个,这两种乒乓球的大小、材质都相同小明发现,摸到白色乒乓球的频率稳定在60%左右,则箱内黄色乒乓球的个数很可能是_12据报道,截止2018年2月,我国在澳大利亚的留学生已经达到17.3万人,将17.3万用科学记数法表示为_13如图,A、B、C是O上的三点,若C=30°,OA=3,则弧AB的长为_(结果保留)14已知是整数,则正整数n的最小值为_15如图,利用图形面积的不同表示方法,能够得到的代数恒等式是_(写出一个即可)16点A(1,2),B(n,2)都在抛物线y=x24x+m上,则n=_三、解答题(共8题,共72分)17(8分)如图,对称轴为直线的抛物线与x轴相交于A、B两点,其中A点的坐标为(3,0)(1)求点B的坐标;(2)已知,C为抛物线与y轴的交点若点P在抛物线上,且,求点P的坐标;设点Q是线段AC上的动点,作QDx轴交抛物线于点D,求线段QD长度的最大值18(8分)在某小学“演讲大赛”选拔赛初赛中,甲、乙、丙三位评委对小选手的综合表现,分别给出“待定”(用字母W表示)或“通过”(用字母P表示)的结论(1)请用树状图表示出三位评委给小选手琪琪的所有可能的结论;(2)对于小选手琪琪,只有甲、乙两位评委给出相同结论的概率是多少?(3)比赛规定,三位评委中至少有两位给出“通过”的结论,则小选手可入围进入复赛,问琪琪进入复赛的概率是多少?19(8分)如图所示,AB是O的直径,AE是弦,C是劣弧AE的中点,过C作CDAB于点D,CD交AE于点F,过C作CGAE交BA的延长线于点G求证:CG是O的切线求证:AFCF若sinG0.6,CF4,求GA的长20(8分)为了传承祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”. (1)小明回答该问题时,仅对第二个字是选“重”还是选“穷”难以抉择,随机选择其中一个,则小明回答正确的概率是 ; (2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.九宫格21(8分)如图,正方形ABCD中,M为BC上一点,F是AM的中点,EFAM,垂足为F,交AD的延长线于点E,交DC于点N求证:ABMEFA;若AB=12,BM=5,求DE的长22(10分)如图是东方货站传送货物的平面示意图,为了提高安全性,工人师傅打算减小传送带与地面的夹角,由原来的45°改为36°,已知原传送带BC长为4米,求新传送带AC的长及新、原传送带触地点之间AB的长(结果精确到0.1米)参考数据:sin36°0.59,cos36°0.1,tan36°0.73,取1.41423(12分)已知二次函数y=x2-4x-5,与y轴的交点为P,与x轴交于A、B两点(点B在点A的右侧)(1)当y=0时,求x的值(2)点M(6,m)在二次函数y=x2-4x-5的图像上,设直线MP与x轴交于点C,求cotMCB的值24如图,在顶点为P的抛物线y=a(x-h)2+k(a0)的对称轴1的直线上取点A(h,k+),过A作BCl交抛物线于B、C两点(B在C的左侧),点和点A关于点P对称,过A作直线ml又分别过点B,C作直线BEm和CDm,垂足为E,D在这里,我们把点A叫此抛物线的焦点,BC叫此抛物线的直径,矩形BCDE叫此抛物线的焦点矩形(1)直接写出抛物线y=x2的焦点坐标以及直径的长(2)求抛物线y=x2-x+的焦点坐标以及直径的长(3)已知抛物线y=a(x-h)2+k(a0)的直径为,求a的值(4)已知抛物线y=a(x-h)2+k(a0)的焦点矩形的面积为2,求a的值直接写出抛物线y=x2-x+的焦点短形与抛物线y=x2-2mx+m2+1公共点个数分别是1个以及2个时m的值参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】观察可得最简公分母是(x-3)(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解【详解】方程的两边同乘(x3)(x+1),得(x2) (x+1)=x(x3),解得x=1.检验:把x=1代入(x3)(x+1)=-40.原方程的解为:x=1.故选B.【点睛】本题考查的知识点是解分式方程,解题关键是注意解得的解要进行检验.2、A【解析】【分析】一次函数y=kx+b的图象经过第几象限,取决于k和b当k0,bO时,图象过一、二、三象限,据此作答即可【详解】一次函数y=3x+1的k=30,b=10,图象过第一、二、三象限,故选A【点睛】一次函数y=kx+b的图象经过第几象限,取决于x的系数和常数项.3、A【解析】方程两边同乘2x(x+3),得x+3=2kx,(2k-1)x=3,方程无解,当整式方程无解时,2k-1=0,k=,当分式方程无解时,x=0时,k无解,x=-3时,k=0,k=0或时,方程无解,故选A.4、A【解析】根据翻折得出AB=BD,AC=CD,推出AB=BD=CD=AC,根据菱形的判定推出即可【详解】 将 ABC 延底边 BC 翻折得到 DBC ,AB=BD , AC=CD ,AB=AC ,AB=BD=CD=AC , 四边形 ABDC 是菱形;故选A.【点睛】本题考查了菱形的判定方法:四边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形;有一组邻边相等的平行四边形是菱形.5、C【解析】根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可【详解】3m×2m=6m2,长方形广告牌的成本是120÷6=20元/m2,将此广告牌的四边都扩大为原来的3倍,则面积扩大为原来的9倍,扩大后长方形广告牌的面积=9×6=54m2,扩大后长方形广告牌的成本是54×20=1080元,故选C【点睛】本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键6、B【解析】科学记数法的表示形式为a×10n的形式,其中1|a|<10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数【详解】0.00000637的小数点向右移动6位得到6.37所以0.00000637用科学记数法表示为6.37×106,故选B【点睛】本题考查科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|<10,n为整数,表示时关键要正确确定a的值以及n的值7、C【解析】将一个数写成的形式,其中,n是正数,这种记数的方法叫做科学记数法,根据定义解答即可.【详解】解:6000万6×1故选:C【点睛】此题考查科学记数法,当所表示的数的绝对值大于1时,n为正整数,其值等于原数中整数部分的数位减去1,当要表示的数的绝对值小于1时,n为负整数,其值等于原数中第一个非零数字前面所有零的个数的相反数,正确掌握科学记数法中n的值的确定是解题的关键.8、D【解析】函数的图象过点A(1,m),B(4,n),m=,n=3,A(1,),B(4,3),过A作ACx轴,交BB的延长线于点C,则C(4,),AC=41=3,曲线段AB扫过的面积为9(图中的阴影部分),ACAA=3AA=9,AA=3,即将函数的图象沿y轴向上平移3个单位长度得到一条新函数的图象,新图象的函数表达式是故选D9、A【解析】根据根与系数的关系和已知x1+x2和x1x2的值,可求a、b的值,再代入求值即可【详解】解:x1,x2是关于x的方程x2+ax2b=0的两实数根,x1+x2=a=2,x1x2=2b=1,解得a=2,b=,ba=()2=故选A10、A【解析】根据方程有两个相等的实数根结合根的判别式即可得出关于k的方程,解之即可得出结论【详解】方程有两个相等的实根,=k2-4×2×3=k2-24=0,解得:k=故选A【点睛】本题考查了根的判别式,熟练掌握“当=0时,方程有两个相等的两个实数根”是解题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、20【解析】先设出白球的个数,根据白球的频率求出白球的个数,再用总的个数减去白球的个数即可【详解】设黄球的个数为x个,共有黄色、白色的乒乓球50个,黄球的频率稳定在60%,60%,解得x30,布袋中白色球的个数很可能是503020(个).故答案为:20.【点睛】本题考查了利用频率估计概率,熟练掌握该知识点是本题解题的关键.12、1.73×1【解析】科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】将17.3万用科学记数法表示为1.73×1故答案为1.73×1【点睛】本题考查了正整数指数科学计数法,根据科学计算法的要求,正确确定出a和n的值是解答本题的关键.13、【解析】C=30°,AOB=60°,.即的长为.14、1【解析】因为是整数,且,则1n是完全平方数,满足条件的最小正整数n为1【详解】,且是整数,是整数,即1n是完全平方数;n的最小正整数值为1故答案为:1【点睛】主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件二次根式有意义的条件是被开方数是非负数进行解答15、(a+b)2=a2+2ab+b2【解析】完全平方公式的几何背景,即乘法公式的几何验证此类题型可从整体和部分两个方面分析问题本题从整体来看,整个图形为一个正方形,找到边长,表示出面积,从部分来看,该图形的面积可用两个小正方形的面积加上2个矩形的面积表示,从不同角度思考,但是同一图形,所以它们面积相等,列出等式.【详解】解:, 【点睛】此题考查了完全平方公式的几何意义,从不同角度思考,用不同的方法表示相应的面积是解题的关键.16、1【解析】根据题意可以求得m的值和n的值,由A的坐标,可确定B的坐标,进而可以得到n的值【详解】:点A(1,2),B(n,2)都在抛物线y=x2-4x+m上, ,解得 或 ,点B为(1,2)或(1,2),点A(1,2),点B只能为(1,2),故n的值为1,故答案为:1【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的性质求解三、解答题(共8题,共72分)17、(1)点B的坐标为(1,0).(2)点P的坐标为(4,21)或(4,5).线段QD长度的最大值为.【解析】(1)由抛物线的对称性直接得点B的坐标(2)用待定系数法求出抛物线的解析式,从而可得点C的坐标,得到,设出点P 的坐标,根据列式求解即可求得点P的坐标用待定系数法求出直线AC的解析式,由点Q在线段AC上,可设点Q的坐标为(q,-q-3),从而由QDx轴交抛物线于点D,得点D的坐标为(q,q2+2q-3),从而线段QD等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解.【详解】解:(1)A、B两点关于对称轴对称 ,且A点的坐标为(3,0),点B的坐标为(1,0).(2)抛物线,对称轴为,经过点A(3,0),解得.抛物线的解析式为.B点的坐标为(0,3).OB=1,OC=3.设点P的坐标为(p,p2+2p-3),则.,解得.当时;当时,点P的坐标为(4,21)或(4,5).设直线AC的解析式为,将点A,C的坐标代入,得:,解得:.直线AC的解析式为.点Q在线段AC上,设点Q的坐标为(q,-q-3).又QDx轴交抛物线于点D,点D的坐标为(q,q2+2q-3).,线段QD长度的最大值为.18、(1)见解析;(2);(3).【解析】(1)根据列树状图的步骤和题意分析所有等可能的出现结果,即可画出图形;(2)根据(1)求出甲、乙两位评委给出相同结论的情况数,再根据概率公式即可求出答案;(3)根据(1)即可求出琪琪进入复赛的概率【详解】(1)画树状图如下:(2)共有8种等可能结果,只有甲、乙两位评委给出相同结论的有2种可能,只有甲、乙两位评委给出相同结论的概率P=;(3)共有8种等可能结果,三位评委中至少有两位给出“通过”结论的有4种可能,乐乐进入复赛的概率P=【点睛】此题考查了列树状图,掌握列树状图的步骤,找出三位评委给出相同结论的情况数是本题的关键,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P=19、(1)见解析;(2)见解析;(3)AG1【解析】(1)利用垂径定理、平行的性质,得出OCCG,得证CG是O的切线.(2)利用直径所对圆周角为和垂直的条件得出2=B,再根据等弧所对的圆周角相等得出1=B,进而证得1=2,得证AF=CF.(3)根据直角三角形的性质,求出AD的长度,再利用平行的性质计算出结果.【详解】(1)证明:连结OC,如图,C是劣弧AE的中点,OCAE,CGAE,CGOC,CG是O的切线;(2)证明:连结AC、BC,AB是O的直径,ACB90°,2+BCD90°,而CDAB,B+BCD90°,B2,C是劣弧AE的中点,,1B,12,AFCF;(3)解:CGAE,FADG,sinG0.6,sinFAD0.6,CDA90°,AFCF4,DF2.4,AD3.2,CDCF+DF6.4,AFCG,, DG,AGDGAD1【点睛】本题主要考查与圆有关的位置关系和圆中的计算问题,掌握切线的判定定理以及解直角三角形是解题的关键.20、(1);(2) 【解析】试题分析:(1)利用概率公式直接计算即可;(2)画出树状图得到所有可能的结果,再找到回答正确的数目即可求出小丽回答正确的概率试题解析:(1)对第二个字是选“重”还是选“穷”难以抉择,若随机选择其中一个正确的概率=,故答案为;(2)画树形图得:由树状图可知共有4种可能结果,其中正确的有1种,所以小丽回答正确的概率=考点:列表法与树状图法;概率公式21、(1)见解析;(2)4.1【解析】试题分析:(1)由正方形的性质得出AB=AD,B=10°,ADBC,得出AMB=EAF,再由B=AFE,即可得出结论;(2)由勾股定理求出AM,得出AF,由ABMEFA得出比例式,求出AE,即可得出DE的长试题解析:(1)四边形ABCD是正方形,AB=AD,B=10°,ADBC,AMB=EAF,又EFAM,AFE=10°,B=AFE,ABMEFA;(2)B=10°,AB=12,BM=5,AM=13,AD=12,F是AM的中点,AF=AM=6.5,ABMEFA,即,AE=16.1,DE=AE-AD=4.1考点:1.相似三角形的判定与性质;2.正方形的性质22、新传送带AC的长为1.8m,新、原传送带触地点之间AB的长约为1.2m【解析】根据题意得出:A=36°,CBD=15°,BC=1,即可得出BD的长,再表示出AD的长,进而求出AB的长【详解】解:如图,作CDAB于点D,由题意可得:A=36°,CBD=15°,BC=1在RtBCD中,sinCBD=,CD=BCsinCBD=2CBD=15°,BD=CD=2在RtACD中,sinA=,tanA=,AC=1.8,AD=,AB=ADBD=2=2×1.1113.872.83=1.211.2答:新传送带AC的长为1.8m,新、原传送带触地点之间AB的长约为1.2m【点睛】本题考查了坡度坡角问题,正确构建直角三角形再求出BD的长是解题的关键23、(1),;(2)【解析】(1)当y=0,则x2-4x-5=0,解方程即可得到x的值.(2) 由题意易求M,P点坐标,再求出MP的直线方程,可得cotMCB.【详解】(1)把代入函数解析式得,即,解得:,. (2)把代入得,即得,二次函数,与轴的交点为,点坐标为. 设直线的解析式为,代入,得解得, 点坐标为, 在中,又.【点睛】本题考查的知识点是抛物线与x轴的交点,二次函数的性质,解题的关键是熟练的掌握抛物线与x轴的交点,二次函数的性质.24、(1)4(1)4(3)(4)a=±;当m=1-或m=5+时,1个公共点,当1-m1或5m5+时,1个公共点,【解析】(1)根据题意可以求得抛物线y=x1的焦点坐标以及直径的长;(1)根据题意可以求得抛物线y=x1-x+的焦点坐标以及直径的长;(3)根据题意和y=a(x-h)1+k(a0)的直径为,可以求得a的值;(4)根据题意和抛物线y=ax1+bx+c(a0)的焦点矩形的面积为1,可以求得a的值;根据(1)中的结果和图形可以求得抛物线y=x1-x+的焦点矩形与抛物线y=x1-1mx+m1+1公共点个数分别是1个以及1个时m的值【详解】(1)抛物线y=x1,此抛物线焦点的横坐标是0,纵坐标是:0+=1,抛物线y=x1的焦点坐标为(0,1),将y=1代入y=x1,得x1=-1,x1=1,此抛物线的直径是:1-(-1)=4;(1)y=x1-x+=(x-3)1+1,此抛物线的焦点的横坐标是:3,纵坐标是:1+=3,焦点坐标为(3,3),将y=3代入y=(x-3)1+1,得3=(x-3)1+1,解得,x1=5,x1=1,此抛物线的直径时5-1=4;(3)焦点A(h,k+),k+=a(x-h)1+k,解得,x1=h+,x1=h-,直径为:h+-(h-)=,解得,a=±,即a的值是;(4)由(3)得,BC=,又CD=A'A=所以,S=BCCD=1解得,a=±;当m=1-或m=5+时,1个公共点,当1-m1或5m5+时,1个公共点,理由:由(1)知抛,物线y=x1-x+的焦点矩形顶点坐标分别为:B(1,3),C(5,3),E(1,1),D(5,1),当y=x1-1mx+m1+1=(x-m)1+1过B(1,3)时,m=1-或m=1+(舍去),过C(5,3)时,m=5-(舍去)或m=5+,当m=1-或m=5+时,1个公共点;当1-m1或5m5+时,1个公共点由图可知,公共点个数随m的变化关系为当m1-时,无公共点;当m=1-时,1个公共点;当1-m1时,1个公共点;当1m5时,3个公共点;当5m5+时,1个公共点;当m=5+时,1个公共点;当m5+时,无公共点;由上可得,当m=1-或m=5+时,1个公共点;当1-m1或5m5+时,1个公共点【点睛】考查了二次函数综合题,解答本题的关键是明确题意,知道什么是抛物线的焦点、直径、焦点四边形,找出所求问题需要的条件,利用数形结合的思想和二次函数的性质、矩形的性质解答